Abstract

The Raman gain enhancement of a regenerative ultrafast all-optical cross-phase modulation (XPM) wavelength converter (WC) is quantitatively investigated and experimentally demonstrated to operate error free at 40 and 80 Gb/s. The regenerative nature of the converter is shown by experimentally demonstrating a negative 2-dB power penalty at 80 Gb/s. It is also shown that the Raman gain greatly enhances the wavelength conversion efficiency at 80 Gb/s by 21 dB at a Raman pump power of 600 mW using 1 km of highly nonlinear fiber. An analytical theory based on nonlinear phase-shift enhancement of the fiber-effective length is presented and shows the relationship between a nonlinear enhancement and Raman gain as a function of pump power and fiber design parameters. Measured parameters are used in the analytical model, and a good fit between experiment and theory is shown for two different types of fiber: one dispersion-shifted and one highly nonlinear fiber. The ultrafast response time of Raman gain makes this technique applicable to fiber-based ultrafast WCs. In addition, the applicability to other nonlinear fiber wavelength conversion techniques is discussed.

© 2005 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription