Abstract

This paper describes a software-synchronized all-optical sampling system that presents synchronous eye diagrams and data patterns as well as calculates accurate Q values without requiring clock recovery. A synchronization algorithm is presented that calculates the offset frequency between the data bit rate and the sampling rate, and as a result, synchronous eye diagrams can be presented. The algorithm is shown to be robust toward poor signal quality and adds less than 100-fs timing drift to the eye diagrams. An extension of the software synchronization algorithm makes it possible to automatically find the pattern length of a periodic data pattern in a data signal. As a result, individual pulses can be investigated and detrimental effects present on the data signal can be identified. Noise averaging can also be applied. To measure accurate Q values without clock recovery, a high sampling rate is required in order to establish the noise statistics of the measured signal before any timing drift occurs. This paper presents a system with a 100-MHz sampling rate that measures accurate Q values at bit rates as high as 160 Gb/s. The high bandwidth of the optical sampling system also contributes to sampling more noise, which in turn results in lower Q values compared with conventional electrical sampling with a lower bandwidth. A theory that estimates the optically sampled Q values as a function of the sampling gate width is proposed and experimentally verified.

© 2005 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription