Abstract

Conventionally, the beam-propagation method for solving the generalized nonlinear Schrödinger equation, including the slowly varying envelope approximation, has been used to describe the ultrashort-laser-pulse propagation in an optical fiber. However, if the pulse duration approaches the optical cycle regime (<10 fs), this approximation becomes invalid. Then, it becomes necessary to use the finite-difference time-domain (FDTD) method for solving the Maxwell equation with the least approximation. In order to both experimentally and numerically investigate nonlinear femtosecond ultra-broad-band-pulse propagation in a silica fiber, the FDTD calculation of Maxwell's equations has been extended with nonlinear terms to that including all exact Sellmeier-fitting values. The results of this extended FDTD method are compared with experimental results for the nonlinear propagation of a very short (12-fs) chirped laser pulse in a silica fiber. The fiber output pulse compressed to 7 fs by the simulation of group-delay compensation was obtained under the assumption of using a spatial light modulator. To the authors' knowledge, this is the first comparison between FDTD calculation and experimental results for nonlinear propagation of a very short (12-fs) chirped pulse in a silica fiber.

© 2005 IEEE

PDF Article

References

  • View by:
  • |

  1. S. Nakamura, L. Li, N. Karasawa, R. Morita, H. Shigekawa and M. Yamashita, "Measurements of third-order dispersion effects for generation of high-repetition-rate, sub-three-cycle transform-limited pulses from a glass fiber", Jpn. J. Appl. Phys., Part 1, vol. 41, no. 3A, pp. 1369-1373, Mar. 2002.
  2. N. Karasawa, S. Nakamura, R. Morita, H. Shigekawa and M. Yamashita, "Comparison between theory and experiment of nonlinear propagation for 4.5-cycle optical pulses in a fused-silica fiber", Nonlinear Opt., vol. 24, pp. 133-138, 2000.
  3. N. Karasawa, L. Li, A. Suguro, H. Shigekawa, R. Morita and M. Yamashita, "Optical pulse compression to 5.0 fs using only a spatial light modulator", J. Opt. Soc. Amer. B, Opt. Phys., vol. 18, pp. 1742-1746, Nov. 2001.
  4. G. A. Agrawal, Nonlinear Fiber Optics, 2nd ed. San Diego, CA: Academic, 1995, ch. 1 and 2.
  5. R. M. Joseph and A. Taflove, "FDTD Maxwell's equations models for nonlinear electrodynamics and optics", IEEE Trans. Antennas Propag., vol. 45, no. 3, pp. 364-374, Mar. 1997.
  6. V. P. Kalosha and J. Herrmann, "Self-phase modulation and compression of few-optical-cycle pulses", Phys. Rev. A, Gen. Phys., vol. 62, pp. R11804.1-R11804.4, 2000.
  7. P. M. Goorjian, A. Taflove, R. M. Joseph and S. C. Hagness, "Computational modeling of femtosecond optical solitons from Maxwell's equations", IEEE J. Quantum Electron., vol. 28, no. 10, pp. 2416-2422, Oct. 1992.
  8. R. M. Joseph, P. M. Goorjian and A. Taflove, "Direct time integration of Maxwell's equations in 2-D dielectric waveguides for propagation and scattering of femtosecond electromagnetic solitons", Opt. Lett., vol. 18, pp. 491-493, Apr. 1993.
  9. A. Taflove and S. C. Hagness, 9.6 Computational Electrodynamics: The Finite-Difference Time-Domain Method , 2nd ed. Norwood, MA: Artech House, 2000, ch. 9, pp. 398-401.
  10. K. Yamane, Z. Zhang, K. Oka, R. Morita, M. Yamashita and A. Suguro, "Optical pulse compression to 3.4 fs in the monocycle region by feedback phase compensation", Opt. Lett., vol. 28, no. 22, pp. 2258-2260, Nov. 2003.
  11. Z. Cheng, G. Tempea, T. Brabec, K. Ferencz, C. Spielman and F. Krausz, "Generation of intense diffraction-limited white light and 4-fs pulses", Ultrafast Phenomena XI, pp. 8-10, 1998.
  12. J. K. Ranka, R. S. Windeler and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm", Opt. Lett., vol. 25, pp. 25-27, Jan. 2000.
  13. T. A. Birks, W. J. Wadsworth and P. St. J. Russell, "Supercontinuum generation in tapered fibers", Opt. Lett., vol. 25, pp. 1415-1417, Oct. 2000.
  14. S. Nakamura, Y. Koyamada, N. Yoshida, N. Karasawa, H. Sone, M. Ohtani, Y. Mizuta, R. Morita, H. Shigekawa and M. Yamashita, "Finite-difference time-domain calculation with all parameters of Sellmeier's fitting equation for 12-fs laser pulse propagation in a silica fiber", IEEE Photon. Technol. Lett., vol. 14, no. 4, pp. 480-482, Apr. 2002.
  15. I. H. Malitson, "Interspecimen comparison of the refractive index of fused silica", J. Opt. Soc. Amer., vol. 55, no. 10, pp. 1205-1209, Aug. 1961.
  16. A. J. Taylor, G. R. Rodriguez and T. S. Clement, "Determination of n2 by direct measurement of the optical phase", Opt. Lett., vol. 21, pp. 1812-1814, Nov. 1996.

Opt. Lett. (4)

Other (12)

S. Nakamura, Y. Koyamada, N. Yoshida, N. Karasawa, H. Sone, M. Ohtani, Y. Mizuta, R. Morita, H. Shigekawa and M. Yamashita, "Finite-difference time-domain calculation with all parameters of Sellmeier's fitting equation for 12-fs laser pulse propagation in a silica fiber", IEEE Photon. Technol. Lett., vol. 14, no. 4, pp. 480-482, Apr. 2002.

I. H. Malitson, "Interspecimen comparison of the refractive index of fused silica", J. Opt. Soc. Amer., vol. 55, no. 10, pp. 1205-1209, Aug. 1961.

A. Taflove and S. C. Hagness, 9.6 Computational Electrodynamics: The Finite-Difference Time-Domain Method , 2nd ed. Norwood, MA: Artech House, 2000, ch. 9, pp. 398-401.

K. Yamane, Z. Zhang, K. Oka, R. Morita, M. Yamashita and A. Suguro, "Optical pulse compression to 3.4 fs in the monocycle region by feedback phase compensation", Opt. Lett., vol. 28, no. 22, pp. 2258-2260, Nov. 2003.

Z. Cheng, G. Tempea, T. Brabec, K. Ferencz, C. Spielman and F. Krausz, "Generation of intense diffraction-limited white light and 4-fs pulses", Ultrafast Phenomena XI, pp. 8-10, 1998.

S. Nakamura, L. Li, N. Karasawa, R. Morita, H. Shigekawa and M. Yamashita, "Measurements of third-order dispersion effects for generation of high-repetition-rate, sub-three-cycle transform-limited pulses from a glass fiber", Jpn. J. Appl. Phys., Part 1, vol. 41, no. 3A, pp. 1369-1373, Mar. 2002.

N. Karasawa, S. Nakamura, R. Morita, H. Shigekawa and M. Yamashita, "Comparison between theory and experiment of nonlinear propagation for 4.5-cycle optical pulses in a fused-silica fiber", Nonlinear Opt., vol. 24, pp. 133-138, 2000.

N. Karasawa, L. Li, A. Suguro, H. Shigekawa, R. Morita and M. Yamashita, "Optical pulse compression to 5.0 fs using only a spatial light modulator", J. Opt. Soc. Amer. B, Opt. Phys., vol. 18, pp. 1742-1746, Nov. 2001.

G. A. Agrawal, Nonlinear Fiber Optics, 2nd ed. San Diego, CA: Academic, 1995, ch. 1 and 2.

R. M. Joseph and A. Taflove, "FDTD Maxwell's equations models for nonlinear electrodynamics and optics", IEEE Trans. Antennas Propag., vol. 45, no. 3, pp. 364-374, Mar. 1997.

V. P. Kalosha and J. Herrmann, "Self-phase modulation and compression of few-optical-cycle pulses", Phys. Rev. A, Gen. Phys., vol. 62, pp. R11804.1-R11804.4, 2000.

P. M. Goorjian, A. Taflove, R. M. Joseph and S. C. Hagness, "Computational modeling of femtosecond optical solitons from Maxwell's equations", IEEE J. Quantum Electron., vol. 28, no. 10, pp. 2416-2422, Oct. 1992.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.