Abstract

Quadrature phase-shift keying (QPSK) is attractive to increase transmission lengths and capacity, especially when it is combined with polarization division multiplex. Baseband processing at the symbol rate allows to keep the required electronic bandwidth low. So far, external cavity lasers seemed to be indispensable for such transmission systems due to linewidth requirements. We propose a feedforward carrier recovery scheme based on regenerative intradyne frequency dividers, i.e., the well-known regenerative frequency divider is extended to process baseband in-phase and quadrature (I and Q) signals. An IF linewidth tolerance of up to 0.001 times the QPSK symbol rate is predicted,2 decades more than for an optical phase locked loop with a realistic loop delay. This means that commercially available DFB lasers shall suffice for synchronous optical QPSK/BPSK transmission.

© 2005 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription