Abstract

Enhanced security has often been cited as an important benefit of optical CDMA (O-CDMA) signaling. However, the quality and degree of security enhancement has not been closely examined in the literature. This paper examines the degree and types of security that may be provided by O-CDMA encoding. A quantitative analysis of data confidentiality is presented for O-CDMA encoding techniques that use both time spreading and wavelength hopping. The probability of successful data interception is calculated as a function of several parameters, including signal-to-noise ratio and fraction of total available system capacity. For reasonable choices of system and encoding parameters, it is shown that increasing code complexity can increase the signal-to-noise ratio (SNR) required for an eavesdropper to "break" the encoding by only a few dB, while the processing of fewer than 100 bits by an eavesdropper can reduce the SNR required to break the encoding by up to 12 dB. The overall degree of confidentiality obtainable through O-CDMA encoding is also compared with that obtainable through standard cryptography. time-spreading/wavelength-hopping in particular, and O-CDMA in general, are found to provide considerably less data confidentiality than cryptography, and the confidentiality provided is found to be highly dependent on system design and implementation parameters.

© 2005 IEEE

PDF Article

References

  • View by:
  • |

  1. N. Karafolas and D. Uttamcandani, "Optical fiber code division multiple access networks: A review", Optical Fiber Technol., vol. 2, pp. 149-168, 1996.
  2. K. Iverson and D. Hampicke, "Comparison and classification of all-optical CDMA systems for future telecommunication networks", in Proc. SPIE, vol. 2614, 1995, pp. 110-121.
  3. L. Tancevski, I. Andonovic and J. Budin, "Secure optical network architectures utilizing wavelength hopping/time spreading codes", IEEE Photon. Technol. Lett., vol. 7, no. 5, pp. 573-575, May 1995.
  4. P. Torres, L. C. G. Valente and M. C. R. Carvalho, "Security system for optical communication signals with fiber bragg gratings", IEEE Trans. Microwave Theory Tech., vol. 50, no. 1, pp. 13-16, Jan. 2002.
  5. D. D. Sampson, G. J. Pendock and R. A. Griffin, "Photonic code-division multiple-access communications", Fiber Int. Opt., vol. 16, pp. 129-157, 1997.
  6. W. Ford, Computer Communications Security, Upper Saddle River, NJ: Prentice-Hall, 1994, ch. 2.
  7. M. K. Simon, J. K. Omura, R. A. Scholtz and B. K. Levitt, Spread Spectrum Communications, Rockville, MD: Computer Science Press, 1985.
  8. D. R. Stinson, Cryptography, Boca Raton, FL: CRC, 1995, ch. 2.
  9. B. Schneier, Applied Cryptography, 2nd ed. New York: Wiley, 1996, pp. 8-9.
  10. N. Ferguson and B. Schneier, Practical Cryptography, Indianapolis, IN: Wiley, 2003.
  11. J. A. Salehi, "Code division multiple-access techniques in optical fiber networks-Part I: Fundamental principles", IEEE Trans. Commun., vol. 37, no. 8, pp. 824-833, Aug. 1989.
  12. G.-C. Yang and W. C. Kwong, Prime Codes, Belmont, MA: Artech House, 2003.
  13. S. V. Marhic, Z. I. Kostic and E. L. Titlebaum, "A new family of optical code sequences for use in spread spectrum fiber-optic local area networks", IEEE Trans. Commun., vol. 41, no. 8, pp. 1217-1221, Aug. 1993.
  14. H. Fathallah, L. A. Rusch and S. LaRochelle, "Passive optical fast frequency-hop CDMA communications system", J. Lightwave Technol., vol. 17, no. 3, pp. 397-405, Mar. 1999.
  15. M. Kavehrad and D. Zaccarin, "Optical code-division-multiplexed systems based on spectral encoding of noncoherent sources", J. Lightwave Tech. , vol. 13, no. 3, pp. 534-545, Mar. 1995.
  16. J. A. Salehi, A. M. Weiner and J. P. Heritage, "Coherent ultrashort pulse code-division multiple access communication systems", J. Lightw. Technol., pp. 478-491, Mar. 1990.
  17. T. Ojanpera, and R. Prasad, Eds. Wideband CDMA for Third Generation Mobile Communications, Belmont, MA: Artech House, 1998, p. 110.
  18. C. W. Helstrom, Statistical Theory of Signal Detection, 2nd ed. New York: Pergamon, 1968.
  19. W. C. Kwong, P. A. Perrier and P. R. Prucnal, "Performance comparison of asynchronous and synchronous code-division multiple-access techniques for fiber-optic local area networks", IEEE Trans. Commun., vol. 39, no. 11, pp. 1625-1634, Nov. 1991.
  20. M. I. Skolnick, Introduction to Radar Systems, 3rd ed. Boston, MA: McGraw-Hill, 2001.
  21. P. A. Humblet, "Design of optical matched filters", in Proc. IEEE GLOBECOM'91, vol. 2, Dec. 2-5 1991, pp. 1246-1250.
  22. P. A. Humblet and M. Azizoglu, "On the bit error rate of lightwave systems with optical amplifiers", J. Lightw. Technol., vol. 9, no. 11, pp. 1576-1582, Nov. 1991.
  23. B. R. Mahafza, Radar Systems Analysis and Design Using MATLAB, Boca Raton, FL: Chapman Hall/CRC, 2000.
  24. S. B. Alexander, Optical Communication Receiver Design, Bellingham, WA: SPIE Opt. Eng. Press, 1997.
  25. J. G. Proakis, Digital Communications, 3rd ed. Boston, MA: McGraw-Hill, 1995.
  26. A. J. Viterbi, CDMA: Principles of Spread Spectrum Communication, Reading, MA: Addison-Wesley, 1995.
  27. T. Ojanpera, and R. Prasad, Eds. Wideband CDMA for Third Generation Mobile Communications, Belmont, MA: Artech House, 1998.
  28. L. Tancevski and I. Andonovic, "Wavelength hopping/time spreading code division multiple access systems", Elect. Lett., vol. 30, no. 17, pp. 1388-1390, Aug. 1994.
  29. T. H. Shake, "Confidentiality performance of spectral phase encoded optical CDMA", J. Lightw. Technol., 2005. to be published.
  30. Y. Han and B. Jalali, "Photonic time-stretched analog-to-digital converter: Fundamental concepts and practical considerations", J. Lightw. Technol., vol. 21, no. 12, pp. 3085-3103, Dec. 2003.

Other (30)

N. Karafolas and D. Uttamcandani, "Optical fiber code division multiple access networks: A review", Optical Fiber Technol., vol. 2, pp. 149-168, 1996.

K. Iverson and D. Hampicke, "Comparison and classification of all-optical CDMA systems for future telecommunication networks", in Proc. SPIE, vol. 2614, 1995, pp. 110-121.

L. Tancevski, I. Andonovic and J. Budin, "Secure optical network architectures utilizing wavelength hopping/time spreading codes", IEEE Photon. Technol. Lett., vol. 7, no. 5, pp. 573-575, May 1995.

P. Torres, L. C. G. Valente and M. C. R. Carvalho, "Security system for optical communication signals with fiber bragg gratings", IEEE Trans. Microwave Theory Tech., vol. 50, no. 1, pp. 13-16, Jan. 2002.

D. D. Sampson, G. J. Pendock and R. A. Griffin, "Photonic code-division multiple-access communications", Fiber Int. Opt., vol. 16, pp. 129-157, 1997.

W. Ford, Computer Communications Security, Upper Saddle River, NJ: Prentice-Hall, 1994, ch. 2.

M. K. Simon, J. K. Omura, R. A. Scholtz and B. K. Levitt, Spread Spectrum Communications, Rockville, MD: Computer Science Press, 1985.

D. R. Stinson, Cryptography, Boca Raton, FL: CRC, 1995, ch. 2.

B. Schneier, Applied Cryptography, 2nd ed. New York: Wiley, 1996, pp. 8-9.

N. Ferguson and B. Schneier, Practical Cryptography, Indianapolis, IN: Wiley, 2003.

J. A. Salehi, "Code division multiple-access techniques in optical fiber networks-Part I: Fundamental principles", IEEE Trans. Commun., vol. 37, no. 8, pp. 824-833, Aug. 1989.

G.-C. Yang and W. C. Kwong, Prime Codes, Belmont, MA: Artech House, 2003.

S. V. Marhic, Z. I. Kostic and E. L. Titlebaum, "A new family of optical code sequences for use in spread spectrum fiber-optic local area networks", IEEE Trans. Commun., vol. 41, no. 8, pp. 1217-1221, Aug. 1993.

H. Fathallah, L. A. Rusch and S. LaRochelle, "Passive optical fast frequency-hop CDMA communications system", J. Lightwave Technol., vol. 17, no. 3, pp. 397-405, Mar. 1999.

M. Kavehrad and D. Zaccarin, "Optical code-division-multiplexed systems based on spectral encoding of noncoherent sources", J. Lightwave Tech. , vol. 13, no. 3, pp. 534-545, Mar. 1995.

J. A. Salehi, A. M. Weiner and J. P. Heritage, "Coherent ultrashort pulse code-division multiple access communication systems", J. Lightw. Technol., pp. 478-491, Mar. 1990.

T. Ojanpera, and R. Prasad, Eds. Wideband CDMA for Third Generation Mobile Communications, Belmont, MA: Artech House, 1998, p. 110.

C. W. Helstrom, Statistical Theory of Signal Detection, 2nd ed. New York: Pergamon, 1968.

W. C. Kwong, P. A. Perrier and P. R. Prucnal, "Performance comparison of asynchronous and synchronous code-division multiple-access techniques for fiber-optic local area networks", IEEE Trans. Commun., vol. 39, no. 11, pp. 1625-1634, Nov. 1991.

M. I. Skolnick, Introduction to Radar Systems, 3rd ed. Boston, MA: McGraw-Hill, 2001.

P. A. Humblet, "Design of optical matched filters", in Proc. IEEE GLOBECOM'91, vol. 2, Dec. 2-5 1991, pp. 1246-1250.

P. A. Humblet and M. Azizoglu, "On the bit error rate of lightwave systems with optical amplifiers", J. Lightw. Technol., vol. 9, no. 11, pp. 1576-1582, Nov. 1991.

B. R. Mahafza, Radar Systems Analysis and Design Using MATLAB, Boca Raton, FL: Chapman Hall/CRC, 2000.

S. B. Alexander, Optical Communication Receiver Design, Bellingham, WA: SPIE Opt. Eng. Press, 1997.

J. G. Proakis, Digital Communications, 3rd ed. Boston, MA: McGraw-Hill, 1995.

A. J. Viterbi, CDMA: Principles of Spread Spectrum Communication, Reading, MA: Addison-Wesley, 1995.

T. Ojanpera, and R. Prasad, Eds. Wideband CDMA for Third Generation Mobile Communications, Belmont, MA: Artech House, 1998.

L. Tancevski and I. Andonovic, "Wavelength hopping/time spreading code division multiple access systems", Elect. Lett., vol. 30, no. 17, pp. 1388-1390, Aug. 1994.

T. H. Shake, "Confidentiality performance of spectral phase encoded optical CDMA", J. Lightw. Technol., 2005. to be published.

Y. Han and B. Jalali, "Photonic time-stretched analog-to-digital converter: Fundamental concepts and practical considerations", J. Lightw. Technol., vol. 21, no. 12, pp. 3085-3103, Dec. 2003.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.