Abstract

Controlling welding-induced-alignment-distortion (WIAD) and maintaining coupling efficiency is obviously the most challenging issue in assembling of fiber-optic components using laser welding. WIAD is the dominant barrier to having high packaging yields. Previous investigation has revealed that the WIAD in butterfly laser diode module packaging could be mitigated by properly choosing weld process parameters such as welding sequence. In this paper, the effect of welding sequence on WIAD is studied numerically by finite-element method (FEM) with a more realistic physics based laser welding model and experimentally by welding prototype butterfly packages. Results from both methods are compared. It is shown that the influence of welding process parameters on WIAD is significant and WIAD control is possible if proper welding sequence is employed.

© 2005 IEEE

PDF Article

References

  • View by:
  • |

  1. S. Jang, "Automation manufacturing systems technology for opto-electronic device packaging", in Proc. 50th Electron. Comp. Technol. Conf., Las Vegas, NV, May 2000, pp. 10-14.
  2. R. Heyler, "Package design considerations for automated assembly", Fiberoptic Product News, Aug. 1999.
  3. G. Shannon and E. Palen, "Laser-weld attachment enables repeatable submicron precision", Optoelectron. Manufact., vol. 1, no. 2, May 2002.
  4. C. Marley and M. Rodighiero, "Laser welding produces high-yield assembly and packaging", Laser Focus World (Suppl. Issues), pp. 59-64, Aug. 2001.
  5. V. T. Kowalski, R. J. Coyle, P. P. Solan and K. M. Hogan, "Laser weld process improvements for optical isolator assembly", in Proc. 45th Electron. Comp. Technol. Conf., New York, 1995, pp. 1116 -1121.
  6. W. K. Huang, Y. C. Hsu, M. T. Sheen and W. H. Cheng, "Post-weld-shift in butterfly package", in Proc. 4th Int. Symp. Electron. Materials and Packaging, Piscataway, NJ, 2002, pp. 77-82.
  7. J.-H. Kuang, M.-T. Sheen, S.-C. Wang, G.-L. Wang and W.-H. Cheng, "Post-weld-shift in dual-in-line laser package", IEEE Trans. Adv. Packag., vol. 24, pp. 81-85, Feb. 2001.
  8. M. Labudovic and M. Burka, "Finite element analysis of post-weld shift during fiber pigtail of 980 nm pump lasers", IEEE Trans. Adv. Packag., vol. 26, pp. 41-46, Feb. 2003.
  9. W. N. Liu, Y. M. Lin and F. G. Shi, "Welding induced alignment distortion in DIP LD packages: effect of laser welding sequence", in Proc. SPIE, vol. 4652, San Jose, CA, 2002, pp. 128-135.
  10. Y. M. Lin, W. N. Liu and F. G. Shi, "Laser welding induced alignment distortion in butterfly laser module packages: effect of welding sequence", IEEE Trans. Adv. Packag., vol. 25, pp. 73-78, Feb. 2002.
  11. Y. M. Lin and F. G. Shi, "Effects of welding sequence on laser welding induced alignment distortion in butterfly laser diode module packages", in Proc. SPIE, vol. 4997, San Jose, CA, 2003, pp. 30-39.
  12. J. Mazumder and W. M. Steen, "Heat transfer model for CW laser material processing", J. Appl. Phys., vol. 51, pp. 941-947, 1980.
  13. T. Zacharia, S. A. David, J. M. Vitek and T. DebRoy, "Heat transfer during Nd:YAG pulsed laser welding and its effect on solidification structure of austenitic stainless steels", Metallurgical Trans. A, vol. 20A, pp. 957-967, May 1989.
  14. N. Sonti and M. F. Amateau, "Finite-element modeling of heat flow in deep-penetration laser welds in aluminum alloys", Numerical Heat Transfer A, vol. 16, pp. 351-370, 1989.
  15. O. O. Diniz Neto and C. A. S. Lima, "Nonlinear three-dimensional temperature profiles in pulsed laser heated solids", J. Phys. D, vol. 27, pp. 1795-1804, 1994.
  16. M. R. Frewin and D. A. Scott, "Finite element model of pulsed laser welding", Welding J. Res. Suppl., vol. 78, pp. 15s-22s, Jan. 1999.
  17. W. S. Chang and S. J. Na, "A study on the prediction of the laser weld shape with varying heat source equations and the thermal distortion of a small structure in micro-joining", J. Mater. Processing Technol., vol. 120, pp. 208-214, 2002.
  18. MSC.Software Corporation, "MSC.MARC User's Guide", MSC.Software, Inc., 2001.

Other (18)

S. Jang, "Automation manufacturing systems technology for opto-electronic device packaging", in Proc. 50th Electron. Comp. Technol. Conf., Las Vegas, NV, May 2000, pp. 10-14.

R. Heyler, "Package design considerations for automated assembly", Fiberoptic Product News, Aug. 1999.

G. Shannon and E. Palen, "Laser-weld attachment enables repeatable submicron precision", Optoelectron. Manufact., vol. 1, no. 2, May 2002.

C. Marley and M. Rodighiero, "Laser welding produces high-yield assembly and packaging", Laser Focus World (Suppl. Issues), pp. 59-64, Aug. 2001.

V. T. Kowalski, R. J. Coyle, P. P. Solan and K. M. Hogan, "Laser weld process improvements for optical isolator assembly", in Proc. 45th Electron. Comp. Technol. Conf., New York, 1995, pp. 1116 -1121.

W. K. Huang, Y. C. Hsu, M. T. Sheen and W. H. Cheng, "Post-weld-shift in butterfly package", in Proc. 4th Int. Symp. Electron. Materials and Packaging, Piscataway, NJ, 2002, pp. 77-82.

J.-H. Kuang, M.-T. Sheen, S.-C. Wang, G.-L. Wang and W.-H. Cheng, "Post-weld-shift in dual-in-line laser package", IEEE Trans. Adv. Packag., vol. 24, pp. 81-85, Feb. 2001.

M. Labudovic and M. Burka, "Finite element analysis of post-weld shift during fiber pigtail of 980 nm pump lasers", IEEE Trans. Adv. Packag., vol. 26, pp. 41-46, Feb. 2003.

W. N. Liu, Y. M. Lin and F. G. Shi, "Welding induced alignment distortion in DIP LD packages: effect of laser welding sequence", in Proc. SPIE, vol. 4652, San Jose, CA, 2002, pp. 128-135.

Y. M. Lin, W. N. Liu and F. G. Shi, "Laser welding induced alignment distortion in butterfly laser module packages: effect of welding sequence", IEEE Trans. Adv. Packag., vol. 25, pp. 73-78, Feb. 2002.

Y. M. Lin and F. G. Shi, "Effects of welding sequence on laser welding induced alignment distortion in butterfly laser diode module packages", in Proc. SPIE, vol. 4997, San Jose, CA, 2003, pp. 30-39.

J. Mazumder and W. M. Steen, "Heat transfer model for CW laser material processing", J. Appl. Phys., vol. 51, pp. 941-947, 1980.

T. Zacharia, S. A. David, J. M. Vitek and T. DebRoy, "Heat transfer during Nd:YAG pulsed laser welding and its effect on solidification structure of austenitic stainless steels", Metallurgical Trans. A, vol. 20A, pp. 957-967, May 1989.

N. Sonti and M. F. Amateau, "Finite-element modeling of heat flow in deep-penetration laser welds in aluminum alloys", Numerical Heat Transfer A, vol. 16, pp. 351-370, 1989.

O. O. Diniz Neto and C. A. S. Lima, "Nonlinear three-dimensional temperature profiles in pulsed laser heated solids", J. Phys. D, vol. 27, pp. 1795-1804, 1994.

M. R. Frewin and D. A. Scott, "Finite element model of pulsed laser welding", Welding J. Res. Suppl., vol. 78, pp. 15s-22s, Jan. 1999.

W. S. Chang and S. J. Na, "A study on the prediction of the laser weld shape with varying heat source equations and the thermal distortion of a small structure in micro-joining", J. Mater. Processing Technol., vol. 120, pp. 208-214, 2002.

MSC.Software Corporation, "MSC.MARC User's Guide", MSC.Software, Inc., 2001.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.