Abstract

A photonic crystal fiber (PCF) can realize a flat dispersion over a wide wavelength range that cannot be realized with a conventional single-mode fiber. However, the confinement loss tends to increase in a conventional dispersion-flattened PCF (DF-PCF) that has uniform air holes. In this paper, a novel PCF that has two cladding layers with different effective indices is proposed. The authors numerically show that the proposed PCF can achieve an ultralow dispersion variation of less than 0.8 ps/nm ...km in all telecommunication bands, with both a large effective area greater than 100 µm2 and a low confinement loss less than 0.01 dB/km.

© 2005 IEEE

PDF Article

References

  • View by:
  • |

  1. T. Okuno, H. Hatayama, K. Soma, T. Sasaki, M. Onishi and M. Shigematsu, "Negative dispersion-flattened fiber suitable for 10 Gb/s directly-modulated signal transmission in whole telecommunication band", Electron. Lett., vol. 40, no. 12, pp. 723-724, Jun. 2004.
  2. T. Birks, J. Knight and P. Russell, "Endlessly single mode photonic crystal fiber", Opt. Lett., vol. 22, no. 13, pp. 961-963, Jul. 1997.
  3. A. Ferrando, E. Silvestre and P. Andres, "Designing the properties of dispersion-flattened photonic crystal fibers", Opt. Express, vol. 9, no. 13, pp. 687-697, Dec. 2001.
  4. J. Knight, T. Birks, R. Cregan, P. Russell and J. Sandro, "Large mode area photonic crystal fiber", Electron. Lett., vol. 34, no. 13, pp. 1347-1348, Jun. 1998.
  5. K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka and M. Fujita, "High-speed bi-directional polarization division multiplexed optical transmission in ultra low-loss (1.3 dB/km) polarization-maintaining photonic crystal fiber", Electron. Lett., vol. 37, no. 23, pp. 1399-1401, Nov. 2001.
  6. K. Tajima, J. Zhou, K. Kurokawa and K. Nakajima, "Low water peak photonic crystal fibers", in Proc. 29th Eur. Conf. Optical Communication (ECOC), Rimini, Italy,Sep. 2003, pp. 42-43.
  7. M. Nielsen, C. Jacobsen, N. Mortensen, J. Folkenberg and H. Simonsen, "Low-loss photonic crystal fibers for transmission systems and their dispersion properties", Opt. Express, vol. 12, no. 7, pp. 1372-1376, Apr. 2004.
  8. K. Nakajima, J. Zhou, K. Tajima, K. Kurokawa, C. Fukai and I. Sankawa, "Ultra wide band 190 Gb/s WDM transmission over a long length and low loss PCF", presented at the Conf. Optical Fiber Communication (OFC), Los Angeles, CA, Paper PD23, Feb. 2004.
  9. W. Reeves, J. Knight and P. Russell, "Demonstration of ultra-flattened dispersion in photonic crystal fibers", Opt. Express, vol. 10, no. 14, pp. 609-613, Jul. 2002.
  10. K. Saitoh, M. Koshiba, T. Hasegawa and E. Sasaoka, "Chromatic dispersion control in photonic crystal fibers: Application to ultra-flattened dispersion in photonic crystal fibers", Opt. Express, vol. 11, no. 8, pp. 843-851, Apr. 2003.
  11. K. Saitoh and M. Koshiba, "Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window", Opt. Express, vol. 12, no. 10, pp. 2027-2032, May 2004.
  12. F. Poli, A. Cucinotta, S. Selleri and A. Bouk, "Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers", IEEE Photon. Technol. Lett., vol. 16, no. 4, pp. 1065-1067, Apr. 2004.
  13. M. Koshiba, "Full-vector analysis of photonic crystal fibers using the finite element method", IEICE Trans. Electron., vol. E85-C, no. 4, pp. 881-888, Apr. 2002.
  14. D. Marcuse, A. Chraplyvy and R. Tkach, "Effect of fiber nonlinearity on long-distance transmission", J. Lightw. Technol., vol. 9, no. 1, pp. 121-128, Jan. 1991.
  15. B. Dany, O. Leclerc, F. Neddam and P. Le Lourec, "Optimization of 40 Gb/s dispersion maps for long-haul WDM transmissions with up to 0.4 bit/s/Hz spectral efficiency", in Proc. Conf. Optical Fiber Communication (OFC), Anaheim, CA, Mar. 2001, pp. TuN5-1-TuN5-3.
  16. Y. Ni, L. Zhang, L. An, J. Peng and C. Fan, "Dual-core photonic crystal fiber for dispersion compensation", IEEE Photon. Technol. Lett., vol. 16, no. 6, pp. 1516-1518, Jun. 2004.
  17. G. Agrawal, Fiber-Optic Communication Systems, New York: Academic, 2004.
  18. D. Marcuse, "Loss analysis of single-mode fiber splices", Bell Syst. Tech. J., vol. 56, no. 5, pp. 703-718, May 1977.
  19. J. Lizier and G. Town, "Splice losses in holey optical fibers", IEEE Photon. Technol. Lett., vol. 13, no. 8, pp. 794-796, Aug. 2001.

Other (19)

T. Okuno, H. Hatayama, K. Soma, T. Sasaki, M. Onishi and M. Shigematsu, "Negative dispersion-flattened fiber suitable for 10 Gb/s directly-modulated signal transmission in whole telecommunication band", Electron. Lett., vol. 40, no. 12, pp. 723-724, Jun. 2004.

T. Birks, J. Knight and P. Russell, "Endlessly single mode photonic crystal fiber", Opt. Lett., vol. 22, no. 13, pp. 961-963, Jul. 1997.

A. Ferrando, E. Silvestre and P. Andres, "Designing the properties of dispersion-flattened photonic crystal fibers", Opt. Express, vol. 9, no. 13, pp. 687-697, Dec. 2001.

J. Knight, T. Birks, R. Cregan, P. Russell and J. Sandro, "Large mode area photonic crystal fiber", Electron. Lett., vol. 34, no. 13, pp. 1347-1348, Jun. 1998.

K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka and M. Fujita, "High-speed bi-directional polarization division multiplexed optical transmission in ultra low-loss (1.3 dB/km) polarization-maintaining photonic crystal fiber", Electron. Lett., vol. 37, no. 23, pp. 1399-1401, Nov. 2001.

K. Tajima, J. Zhou, K. Kurokawa and K. Nakajima, "Low water peak photonic crystal fibers", in Proc. 29th Eur. Conf. Optical Communication (ECOC), Rimini, Italy,Sep. 2003, pp. 42-43.

M. Nielsen, C. Jacobsen, N. Mortensen, J. Folkenberg and H. Simonsen, "Low-loss photonic crystal fibers for transmission systems and their dispersion properties", Opt. Express, vol. 12, no. 7, pp. 1372-1376, Apr. 2004.

K. Nakajima, J. Zhou, K. Tajima, K. Kurokawa, C. Fukai and I. Sankawa, "Ultra wide band 190 Gb/s WDM transmission over a long length and low loss PCF", presented at the Conf. Optical Fiber Communication (OFC), Los Angeles, CA, Paper PD23, Feb. 2004.

W. Reeves, J. Knight and P. Russell, "Demonstration of ultra-flattened dispersion in photonic crystal fibers", Opt. Express, vol. 10, no. 14, pp. 609-613, Jul. 2002.

K. Saitoh, M. Koshiba, T. Hasegawa and E. Sasaoka, "Chromatic dispersion control in photonic crystal fibers: Application to ultra-flattened dispersion in photonic crystal fibers", Opt. Express, vol. 11, no. 8, pp. 843-851, Apr. 2003.

K. Saitoh and M. Koshiba, "Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window", Opt. Express, vol. 12, no. 10, pp. 2027-2032, May 2004.

F. Poli, A. Cucinotta, S. Selleri and A. Bouk, "Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers", IEEE Photon. Technol. Lett., vol. 16, no. 4, pp. 1065-1067, Apr. 2004.

M. Koshiba, "Full-vector analysis of photonic crystal fibers using the finite element method", IEICE Trans. Electron., vol. E85-C, no. 4, pp. 881-888, Apr. 2002.

D. Marcuse, A. Chraplyvy and R. Tkach, "Effect of fiber nonlinearity on long-distance transmission", J. Lightw. Technol., vol. 9, no. 1, pp. 121-128, Jan. 1991.

B. Dany, O. Leclerc, F. Neddam and P. Le Lourec, "Optimization of 40 Gb/s dispersion maps for long-haul WDM transmissions with up to 0.4 bit/s/Hz spectral efficiency", in Proc. Conf. Optical Fiber Communication (OFC), Anaheim, CA, Mar. 2001, pp. TuN5-1-TuN5-3.

Y. Ni, L. Zhang, L. An, J. Peng and C. Fan, "Dual-core photonic crystal fiber for dispersion compensation", IEEE Photon. Technol. Lett., vol. 16, no. 6, pp. 1516-1518, Jun. 2004.

G. Agrawal, Fiber-Optic Communication Systems, New York: Academic, 2004.

D. Marcuse, "Loss analysis of single-mode fiber splices", Bell Syst. Tech. J., vol. 56, no. 5, pp. 703-718, May 1977.

J. Lizier and G. Town, "Splice losses in holey optical fibers", IEEE Photon. Technol. Lett., vol. 13, no. 8, pp. 794-796, Aug. 2001.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.