Abstract

Wavelength division multiplexing (WDM) technology used in long-haul transmission systems has steadily progressed over the past few years. Newly installed state-of-the-art transoceanic systems now have terabit per second maximum capacity, while being flexible enough to have an initial deployed capacity at a fraction of the maximum. The steady capacity growth of these long-haul fiber-optic cable systems has resulted from many improvements in WDM transmission techniques and an increased understanding of WDM optical propagation. Important strides have been made in areas of dispersion management, gain equalization, modulation formats, and error-correcting codes that have made possible the demonstration of capacities approaching 4 Tb/s over transoceanic distances in laboratory experiments.

© 2005 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription