Abstract

Wavelength division multiplexing (WDM) technology used in long-haul transmission systems has steadily progressed over the past few years. Newly installed state-of-the-art transoceanic systems now have terabit per second maximum capacity, while being flexible enough to have an initial deployed capacity at a fraction of the maximum. The steady capacity growth of these long-haul fiber-optic cable systems has resulted from many improvements in WDM transmission techniques and an increased understanding of WDM optical propagation. Important strides have been made in areas of dispersion management, gain equalization, modulation formats, and error-correcting codes that have made possible the demonstration of capacities approaching 4 Tb/s over transoceanic distances in laboratory experiments.

© 2005 IEEE

PDF Article

References

  • View by:
  • |

  1. N. S. Bergano, "Undersea fiber optic cable systems: High-tech telecommunications tempered by a century of ocean cable experience", Opt. Photon. News Mag., vol. 11, no. 3, pp. 21-25, Mar. 2000.
  2. P. R. Trischitta and W. C. Marra, "Global undersea communications networks", IEEE Commun. Mag., vol. 34, no. 2, p. 201, Feb. 1996.
  3. R. F. Gleason, C. D. Anderson, G. M. Bubel, A. A. Cabrera, R. L. Lynch, B. O. Rein, W. F. Sirocky and M. D. Tremblay, "Submarine cable systems," in The Encyclopedia of Telecommunications, F. E. Froehlich, Ed. New York: Marcel Dekker, 1990,vol. 15.
  4. E. Brandon, "Unrepeatered systems-When to switch to a different technology", presented at the Submarine Optical Communications Conf. (SubOptic), Monaco, Paper TuB1.3, Mar. 2004.
  5. B. Dibner, The Atlantic Cable, Norwalk, CT: Burndy Library, 1959.
  6. P. K. Runge and P. R. Trischitta, "The SL undersea lightwave system," in Undersea Lightwave Communications, P. K. Runge, and P. R. Trischitta, Eds. Piscataway, NJ: IEEE, 1986, ch. 4.
  7. P. R. Trischitta and E. L. Varma, Jitter in Digital Transmission Systems, Norwood, MA: Artech House, 1989.
  8. Y. Okano, K. Nakagawa and T. Ito, "Laser mode partition noise evaluation for optical fiber transmission", IEEE Trans. Commun., vol. COMM-28, no. 2, pp. 238-243, Feb. 1980.
  9. K. Ogawa and R. S. Vodhanel, "Measurements of mode partition noise of laser diodes", IEEE J. Quantum Electron., vol. QE-18, no. 7, pp. 1090-1093, Jul. 1982.
  10. N. S. Bergano and C. R. Davidson, "Circulating loop transmission experiments for the study of long-haul transmission systems using erbium-doped fiber-amplifiers", J. Lightw. Technol., vol. 13, no. 5, p. 879, May 1995.
  11. H. Taga, N. Edagawa, H. Tanaka, M. Suzuki, S. Yamamoto, H. Wakabayashi, N. Bergano, C. Davidson, G. Homsey, D. Kalmus, P. Trischitta, D. Gray and R. Maybach, "10 Gb/s, 9000 km IM-DD transmission experiments using 274 Er-doped fiber amplifier repeaters", presented at the Optical Fiber Communication Conf. (OFC), San Jose, CA, Post-deadline Paper PD1, Feb. 1993.
  12. B. Bakhshi, M. Manna, G. Mohs, D. I. Kovsh, R. Lynch, M. Vaa, E. A. Golovchenko, W. W. Patterson, B. Anderson, P. Corbett, S. Jiang, M. Sanders, H. Li, G. T. Harvey, A. Lucero and S. M. Abbott, "First dispersion-flattened transpacific undersea system: From design to terabit/s field trial", J. Lightw. Technol., vol. 22, no. 1, pp. 233-241, Jan. 2004.
  13. T. Li, "The impact of optical amplifiers on long-distance lightwave telecommunications", Proc. IEEE, vol. 18, no. 11, p. 1568, Nov. 1993.
  14. N. Edagawa, et al. "904 km, 1.2 Gb/s non-regenerative optical transmission experiment using 12 Er-doped fiber amplifiers", in Proc. 15th Eur. Conf. Optical Communication (ECOC), vol. 3, Gothenburg, Sweden,Sep. 1989,Paper PDA-8,. pp. 33-36.
  15. E. Desurvire, C. R. Giles and J. R. Simpson, "Gain saturation effects in high-speed, multi-channel erbium-doped fiber amplifiers at lambda = 1.53 µm", J. Lightw. Technol., vol. 7, no. 12, pp. 2095-2104, Dec. 1989.
  16. C. R. Giles and E. Desurvire, "Propagation of signal and noise in concatenated erbium-doped fiber optical amplifier", J. Lightw. Technol., vol. 9, no. 2, pp. 147-154, Feb. 1991.
  17. F. Forghieri, R. W. Tkach and A. R. Chraplyvy, "Fiber nonlinearities and their impact on transmission systems," in Optical Fiber Telecommunications IIIA, I. P. Kaminow, and T. L. Koch, Eds. San Diego, CA: Academic, 1997, ch. 8.
  18. J. P. Gordon and L. F. Mollenauer, "Effects of fiber nonlinearities and amplifier spacing on ultra-long distance transmission", J. Lightw. Technol., vol. 9, no. 2, pp. 170-173, Feb. 1991.
  19. E. Lichtman, "Optimal amplifier spacing in ultra-long lightwave systems", Electron. Lett., vol. 29, no. 23, p. 2058, Nov. 1993.
  20. A. R. Chraplyvy, R. W. Tkach, K. C. Reichmann, P. D. Magill and J. A. Nagel, "End-to-end equalization experiments in amplified WDM lightwave systems", IEEE Photon. Technol. Lett., vol. 4, no. 4, p. 428, Apr. 1993.
  21. E. Desurvire, J. L. Zyskind and J. R. Simpson, "Spectral gain hole-burning at 1.53 µm in erbium-doped fiber amplifiers", IEEE Photon. Technol. Lett., vol. 2, no. 4, pp. 246-248, Apr. 1990.
  22. A. Pilipetskii, S. Abbott, D. Kovsh, M. Manna, E. Golovchenko, M. Nissov, W. Patterson, B. Bakshi, M. Vaa and S. M. Abbott, "Spectral hole burning simulation and experimental verification in long-haul WDM systems", in Proc. Optical Fiber Communication (OFC), Atlanta, GA, Mar. 2003,Paper ThW2,. pp. 577-578.
  23. H. Gnauck and R. M. Jopson, "Dispersion compensation for optical fiber systems," in Proc. Optical Fiber Telecommunications IIIA, San Diego, CA: Academic, 1997, ch. 7.
  24. F. Forghieri, R. W. Tkach and A. R. Chraplyvy, "Fiber nonlinearities and their impact on transmission systems," in Optical Fiber Telecommunications IIIA, I. P. Kaminow, and T. L. Koch, Eds. San Diego, CA: Academic, 1997, ch. 8.
  25. A. R. Chraplyvy, et al. "8 × 10 Gb/s transmission through 280 km of dispersion-managed fiber", IEEE Photon. Technol. Lett., vol. 5, no. 10, p. 1233, Oct. 1993.
  26. C. R. Davidson, et al. "1800 Gb/s transmission of one hundred and eighty 10 Gb/s WDM channels over 7000 km using the full EDFA C-band", in Proc. Optical Fiber Communication (OFC), Baltimore, MD, Mar. 2000,Post-deadline Paper PD25,. pp. 242-244.
  27. L. Gruner-Nielsen, T. Veng, S. N. Knudsen, C. C. Larson and B. Edvold, "New dispersion compensating fibers for simultaneous compensation of dispersion and dispersion slope of non-zero dispersion shifted fibers in the C or L band", in Proc. Optical Fiber Communication (OFC), Baltimore, MD, Mar. 2000,Paper TuG6,. pp. 101-103.
  28. T. Tsukitani, et al. "Low-loss dispersion-flattened hybrid transmission lines consisting of low-nonlinearity pure silica core fibers and dispersion compensating fibers", Electron. Lett., vol. 36, no. 1, pp. 64-66, Jan. 6, 2000.
  29. T. Naito, T. Terahara, T. Chikama and M. Suyama, "Four 5-Gb/s WDM transmission over 4760-km straight-line using pre-and post-dispersion compensation and FWM cross talk reduction", in Proc. Optical Fiber Communication (OFC), San Jose, CA, 1996,Paper WM3,. pp. 182-183.
  30. G. P. Agrawal, Nonlinear Fiber Optics, New York: Academic, 1989.
  31. N. S. Bergano, et al. "320 Gb/s WDM transmission (64 × 5 Gb/s) over 7200 km using large mode fiber spans and chirped return-to-zero signals", presented at the Optical Fiber Communication Conf. (OFC), San Jose, CA, Paper PD12, Feb. 1998.
  32. E. A. Golovchenko, N. S. Bergano and C. R. Davidson, "Four-wave mixing in multi-span dispersion-managed transmission links", IEEE Photon. Technol. Lett., vol. 10, no. 10, pp. 1481-1483, Oct. 1998.
  33. N. S. Bergano and C. R. Davidson, "Method and apparatus for improving spectral efficiency in wavelength division multiplexed transmission systems", U. S. Patent 6 134 033, Oct. 17, 2000.
  34. P. W. Shumate, et al. "GaAlAs laser transmitter for lightwave transmission systems", Bell Syst. Tech. J., vol. 57, no. 6, p. 1823, Jul./Aug. 1978.
  35. R. A. Linke and A. H. Gnauck, "High-capacity coherent lightwave systems", J. Lightw. Technol., vol. LT-6, no. 11, pp. 1750-1769, Nov. 1988.
  36. A. Gnauck, et al. "2.5 Tb/s (64 × 42.7 Gb/s) transmission over 40 × 100 km NZDSF using RZ-DPSK format and all-Raman-amplified spans", presented at the Oprical Fiber Communication Conf. (OFC), Anaheim, CA, Paper PD-FC2, 2002.
  37. N. S. Bergano, et al. "320 Gb/s WDM transmission (64 × 5 Gb/s) over 7200 km using large mode fiber spans and chirped return-to-zero signals", presented at the Optical Fiber Communication Conf. (OFC), San Jose, CA, Paper PD12, Feb. 1998.
  38. B. Bakhshi, M. Vaa, E. A. Golovchenko, W. W. Patterson, R. L. Maybach and N. S. Bergano, "Comparison of CRZ, RZ and NRZ modulation formats in a 64 × 12.3 Gb/s WDM transmission experiment over 9000 km", in Optical Fiber Communication Conf. (OFC), Anaheim, CA, Mar. 2001, pp. WF4-1-WF4-3.
  39. E. Golovchenko, A. N. Pilipetskii and N. S. Bergano, "Transmission properties of chirped return-to-zero pulses and nonlinear intersymbol interference in 10 Gb/s WDM transmission", in Proc. Optical Fiber Communication (OFC), Baltimore, MD, Mar. 2000,Paper FC3-1,. pp. 38-40.
  40. N. S. Bergano, F. W. Kerfoot and C. R. Davidson, "Margin measurements in optical amplifier systems", IEEE Photon. Technol. Lett., vol. 5, no. 3, pp. 304-306, Mar. 1993.
  41. S. D. Personick, "Receiver design for digital fiber optic communications systems", Bell Syst. Tech. J., vol. 52, no. 6, pp. 843-874, Jul./Aug. 1973.
  42. M. Abramowitz, and I.A. Stegun, Eds. Handbook of Mathematical Functions With Formulas Graphs, and Mathematical Tables, Washington, DC: U.S. Dept. Commerce, 1972, p. 932.
  43. M. Abramowitz, and I. A. Stegun, Eds. Handbook of Mathematical Functions With Formulas Graphs, and Mathematical Tables, Washington, DC: U.S. Dept. Commerce, 1972, p. 933.
  44. "ITU-T Series O: Specifications of measuring equipment", Q-Factor Test Equipment to Estimate the Transmission Performance of Optical Channels,,
  45. P. V. Kumar, et al. "Error-Control coding techniques and applications," in Optical Fiber Telecommunications IVA, I. P. Kaminow, and T. Li, Eds. San Diego, CA: Academic, 2002, ch. 17.
  46. F. W. Kerfoot, "Forward error correction for optical transmission systems", presented at the Optical Fiber Communication Conf. (OFC), Los Angeles, CA, Short Course SC212, Mar. 2004.
  47. N. S. Bergano, J. Aspell, C. R. Davidson, P. R. Trischitta, B. M. Nyman and F. W. Kerfoot, "A 9000 km 5 Gb/s and 21 000 km 2.4 Gb/s feasibility demonstration of transoceanic EDFA systems using a circulating loop", presented at the Optical Fiber Communications Conf., San Diego, CA, Paper PD-13, Feb. 18-22, 1991.
  48. J. C. Feggeler, et al. "10 Gb/s WDM transmission measurements on an installed optical amplifier undersea cable system", Electron. Lett., vol. 31, no. 19, p. 1676, Sep. 14, 1995.
  49. Q. Yu, L.-S. Yan, S. Lee, Y. Xie and A. E. Willner, "Loop-synchronous polarization scrambling technique for simulating polarization effects using recirculating fiber loops", J. Lightw. Technol., vol. 21, no. 7, p. 1593, Jul. 2003.
  50. S. Lee, Q. Yu, L.-S. Yan, Y. Xie, O. H. Adamczyk and A. E. Willner, "A short recirculating fiber loop testbed with accurate reproduction of Maxwellian PMD statistics", in Proc. Optical Fiber Communication (OFC), Anaheim, CA, Mar. 2001, pp. WT2-1-WT2-3.
  51. M. Nissov, J.-X. Cai, A. N. Pilipetskii, Y. Cai, C. R. Davidson, A. Lucero and N. S. Bergano, "Q-factor fluctuations in long distance circulating loop transmission experiments", presented at the Optical Fiber Communication Conf. (OFC), Los Angeles, CA, Paper FM6, Mar. 2004.
  52. J. Schesser, S. M. Abbott, R. L. Easton and M. S. Stix, "Design requirements for the current generation of undersea cable systems", AT&T Tech. J., vol. 74, no. 1, p. 16, Jan./Feb. 1995.
  53. C. R. Giles and E. Desurvire, "Modeling erbium-doped fiber amplifiers", J. Lightw. Technol., vol. 9, no. 2, pp. 271-283, Feb. 1991.
  54. E. A. Golovchenko, A. N. Pilipetskii, N. S. Bergano, C. R. Davidson, F. I. Khatri, R. M. Kimball and V. J. Mazurczyk, "Modeling of transoceanic fiber-optic WDM communication systems", IEEE J. Sel. Topics Quantum Electron., vol. 6, no. 2, pp. 337-347, Mar./Apr. 2000.
  55. S. Yamamoto, N. Edagawa, H. Taga, Y. Yoshida and H. Wakabayashi, "Observation of BER degradation due to fading in long-distance optical amplifier system", Electron. Lett., vol. 29, no. 2, pp. 209-210, Jan. 1993.
  56. W. A. Atia and R. Bondurant, "Demonstration of return-to-zero signaling in both OOK and DPSK formats to improve receiver sensitivity in an optically preamplified receiver", in Proc. Lasers and Electro-Optics Society (LEOS) Annu. Meeting, San Francisco, CA, Nov. 1999,Paper TuM3,. pp. 226-227.
  57. A. H. Gnauck and P. J. Winzer, "Optical phase-shift-keyed transmission", J. Lightw. Technol., vol. 23, no. 1, pp. 115-130, Jan. 2005.
  58. J. X. Cai, et al. "A DWDM demonstration of 3.73 Tb/s over 11 000 km using 373 RZ-DPSK channels at 10 Gb/s", presented at the Optical Fiber Communication Conf. (OFC), Atlanta, GA, Post-Deadline Paper PD22, Mar. 2003.
  59. D. Foursa, et al. "2.56 Tb/s (256 × 10 Gb/s) transmission over 11 000 km using hybrid Raman EDFAs with 80 nm of continuous bandwidth", presented at the Optical Fiber Communication Conf. (OFC), Anaheim, CA, Post-Deadline Paper PD FC3, 2002.
  60. T. Mizuochi, et al. "Experimental demonstration of net coding gain of 10.1 dB using 12.4 Gb/s block turbo code with 3-bit soft decision", in Proc. Optical Fiber Communication Conf. (OFC), Atlanta, GA, Mar. 2003, pp. PD21-P1-3.
  61. H. Kidorf, M. Nissov and D. Foursa, "Ultra-long-haul submarine and terrestrial application," in Raman Amplifiers for Telecommunications 2, M. Islam, Ed. New York: Springer-Verlag, 2004, ch. 17.
  62. M. Ma, H. Kidorf, K. Rottwitt, F. W. Kerfoot and C. Davidson, "240-km repeater spacing in a 5280 km WDM system experiment using 8 × 2.5 Gb/s NRZ transmission", IEEE Photon. Technol. Lett., vol. 10, no. 6, pp. 893-895, Jun. 1998.
  63. M. Nissov, C. R. Davidson, K. Rottwitt, R. Menges, P. C. Corbett, D. Innis and N. S. Bergano, "100 Gb/s (10 × 10 Gb/s) WDM transmission over 7200 km using distributed Raman amplification", in Proc. 11th Int. Conf. Integrated Optics and Optical Fibre Communications and 23rd Eur. Conf. Optical Communications, Edinburgh, U.K.,Sep. 1997, pp. 9-12.
  64. G. Charlet, et al. "WDM transmission at 6 Tb/s capacity over transatlantic distance, using 42.7 Gb/s differential phase-shift keying without pulse carver", presented at the Optical Fiber Communication Conf. (OFC), Los Angeles, CA, Post-Deadline Paper PDP36, 2004.

Other (64)

N. S. Bergano, "Undersea fiber optic cable systems: High-tech telecommunications tempered by a century of ocean cable experience", Opt. Photon. News Mag., vol. 11, no. 3, pp. 21-25, Mar. 2000.

P. R. Trischitta and W. C. Marra, "Global undersea communications networks", IEEE Commun. Mag., vol. 34, no. 2, p. 201, Feb. 1996.

R. F. Gleason, C. D. Anderson, G. M. Bubel, A. A. Cabrera, R. L. Lynch, B. O. Rein, W. F. Sirocky and M. D. Tremblay, "Submarine cable systems," in The Encyclopedia of Telecommunications, F. E. Froehlich, Ed. New York: Marcel Dekker, 1990,vol. 15.

E. Brandon, "Unrepeatered systems-When to switch to a different technology", presented at the Submarine Optical Communications Conf. (SubOptic), Monaco, Paper TuB1.3, Mar. 2004.

B. Dibner, The Atlantic Cable, Norwalk, CT: Burndy Library, 1959.

P. K. Runge and P. R. Trischitta, "The SL undersea lightwave system," in Undersea Lightwave Communications, P. K. Runge, and P. R. Trischitta, Eds. Piscataway, NJ: IEEE, 1986, ch. 4.

P. R. Trischitta and E. L. Varma, Jitter in Digital Transmission Systems, Norwood, MA: Artech House, 1989.

Y. Okano, K. Nakagawa and T. Ito, "Laser mode partition noise evaluation for optical fiber transmission", IEEE Trans. Commun., vol. COMM-28, no. 2, pp. 238-243, Feb. 1980.

K. Ogawa and R. S. Vodhanel, "Measurements of mode partition noise of laser diodes", IEEE J. Quantum Electron., vol. QE-18, no. 7, pp. 1090-1093, Jul. 1982.

N. S. Bergano and C. R. Davidson, "Circulating loop transmission experiments for the study of long-haul transmission systems using erbium-doped fiber-amplifiers", J. Lightw. Technol., vol. 13, no. 5, p. 879, May 1995.

H. Taga, N. Edagawa, H. Tanaka, M. Suzuki, S. Yamamoto, H. Wakabayashi, N. Bergano, C. Davidson, G. Homsey, D. Kalmus, P. Trischitta, D. Gray and R. Maybach, "10 Gb/s, 9000 km IM-DD transmission experiments using 274 Er-doped fiber amplifier repeaters", presented at the Optical Fiber Communication Conf. (OFC), San Jose, CA, Post-deadline Paper PD1, Feb. 1993.

B. Bakhshi, M. Manna, G. Mohs, D. I. Kovsh, R. Lynch, M. Vaa, E. A. Golovchenko, W. W. Patterson, B. Anderson, P. Corbett, S. Jiang, M. Sanders, H. Li, G. T. Harvey, A. Lucero and S. M. Abbott, "First dispersion-flattened transpacific undersea system: From design to terabit/s field trial", J. Lightw. Technol., vol. 22, no. 1, pp. 233-241, Jan. 2004.

T. Li, "The impact of optical amplifiers on long-distance lightwave telecommunications", Proc. IEEE, vol. 18, no. 11, p. 1568, Nov. 1993.

N. Edagawa, et al. "904 km, 1.2 Gb/s non-regenerative optical transmission experiment using 12 Er-doped fiber amplifiers", in Proc. 15th Eur. Conf. Optical Communication (ECOC), vol. 3, Gothenburg, Sweden,Sep. 1989,Paper PDA-8,. pp. 33-36.

E. Desurvire, C. R. Giles and J. R. Simpson, "Gain saturation effects in high-speed, multi-channel erbium-doped fiber amplifiers at lambda = 1.53 µm", J. Lightw. Technol., vol. 7, no. 12, pp. 2095-2104, Dec. 1989.

C. R. Giles and E. Desurvire, "Propagation of signal and noise in concatenated erbium-doped fiber optical amplifier", J. Lightw. Technol., vol. 9, no. 2, pp. 147-154, Feb. 1991.

F. Forghieri, R. W. Tkach and A. R. Chraplyvy, "Fiber nonlinearities and their impact on transmission systems," in Optical Fiber Telecommunications IIIA, I. P. Kaminow, and T. L. Koch, Eds. San Diego, CA: Academic, 1997, ch. 8.

J. P. Gordon and L. F. Mollenauer, "Effects of fiber nonlinearities and amplifier spacing on ultra-long distance transmission", J. Lightw. Technol., vol. 9, no. 2, pp. 170-173, Feb. 1991.

E. Lichtman, "Optimal amplifier spacing in ultra-long lightwave systems", Electron. Lett., vol. 29, no. 23, p. 2058, Nov. 1993.

A. R. Chraplyvy, R. W. Tkach, K. C. Reichmann, P. D. Magill and J. A. Nagel, "End-to-end equalization experiments in amplified WDM lightwave systems", IEEE Photon. Technol. Lett., vol. 4, no. 4, p. 428, Apr. 1993.

E. Desurvire, J. L. Zyskind and J. R. Simpson, "Spectral gain hole-burning at 1.53 µm in erbium-doped fiber amplifiers", IEEE Photon. Technol. Lett., vol. 2, no. 4, pp. 246-248, Apr. 1990.

A. Pilipetskii, S. Abbott, D. Kovsh, M. Manna, E. Golovchenko, M. Nissov, W. Patterson, B. Bakshi, M. Vaa and S. M. Abbott, "Spectral hole burning simulation and experimental verification in long-haul WDM systems", in Proc. Optical Fiber Communication (OFC), Atlanta, GA, Mar. 2003,Paper ThW2,. pp. 577-578.

H. Gnauck and R. M. Jopson, "Dispersion compensation for optical fiber systems," in Proc. Optical Fiber Telecommunications IIIA, San Diego, CA: Academic, 1997, ch. 7.

F. Forghieri, R. W. Tkach and A. R. Chraplyvy, "Fiber nonlinearities and their impact on transmission systems," in Optical Fiber Telecommunications IIIA, I. P. Kaminow, and T. L. Koch, Eds. San Diego, CA: Academic, 1997, ch. 8.

A. R. Chraplyvy, et al. "8 × 10 Gb/s transmission through 280 km of dispersion-managed fiber", IEEE Photon. Technol. Lett., vol. 5, no. 10, p. 1233, Oct. 1993.

C. R. Davidson, et al. "1800 Gb/s transmission of one hundred and eighty 10 Gb/s WDM channels over 7000 km using the full EDFA C-band", in Proc. Optical Fiber Communication (OFC), Baltimore, MD, Mar. 2000,Post-deadline Paper PD25,. pp. 242-244.

L. Gruner-Nielsen, T. Veng, S. N. Knudsen, C. C. Larson and B. Edvold, "New dispersion compensating fibers for simultaneous compensation of dispersion and dispersion slope of non-zero dispersion shifted fibers in the C or L band", in Proc. Optical Fiber Communication (OFC), Baltimore, MD, Mar. 2000,Paper TuG6,. pp. 101-103.

T. Tsukitani, et al. "Low-loss dispersion-flattened hybrid transmission lines consisting of low-nonlinearity pure silica core fibers and dispersion compensating fibers", Electron. Lett., vol. 36, no. 1, pp. 64-66, Jan. 6, 2000.

T. Naito, T. Terahara, T. Chikama and M. Suyama, "Four 5-Gb/s WDM transmission over 4760-km straight-line using pre-and post-dispersion compensation and FWM cross talk reduction", in Proc. Optical Fiber Communication (OFC), San Jose, CA, 1996,Paper WM3,. pp. 182-183.

G. P. Agrawal, Nonlinear Fiber Optics, New York: Academic, 1989.

N. S. Bergano, et al. "320 Gb/s WDM transmission (64 × 5 Gb/s) over 7200 km using large mode fiber spans and chirped return-to-zero signals", presented at the Optical Fiber Communication Conf. (OFC), San Jose, CA, Paper PD12, Feb. 1998.

E. A. Golovchenko, N. S. Bergano and C. R. Davidson, "Four-wave mixing in multi-span dispersion-managed transmission links", IEEE Photon. Technol. Lett., vol. 10, no. 10, pp. 1481-1483, Oct. 1998.

N. S. Bergano and C. R. Davidson, "Method and apparatus for improving spectral efficiency in wavelength division multiplexed transmission systems", U. S. Patent 6 134 033, Oct. 17, 2000.

P. W. Shumate, et al. "GaAlAs laser transmitter for lightwave transmission systems", Bell Syst. Tech. J., vol. 57, no. 6, p. 1823, Jul./Aug. 1978.

R. A. Linke and A. H. Gnauck, "High-capacity coherent lightwave systems", J. Lightw. Technol., vol. LT-6, no. 11, pp. 1750-1769, Nov. 1988.

A. Gnauck, et al. "2.5 Tb/s (64 × 42.7 Gb/s) transmission over 40 × 100 km NZDSF using RZ-DPSK format and all-Raman-amplified spans", presented at the Oprical Fiber Communication Conf. (OFC), Anaheim, CA, Paper PD-FC2, 2002.

N. S. Bergano, et al. "320 Gb/s WDM transmission (64 × 5 Gb/s) over 7200 km using large mode fiber spans and chirped return-to-zero signals", presented at the Optical Fiber Communication Conf. (OFC), San Jose, CA, Paper PD12, Feb. 1998.

B. Bakhshi, M. Vaa, E. A. Golovchenko, W. W. Patterson, R. L. Maybach and N. S. Bergano, "Comparison of CRZ, RZ and NRZ modulation formats in a 64 × 12.3 Gb/s WDM transmission experiment over 9000 km", in Optical Fiber Communication Conf. (OFC), Anaheim, CA, Mar. 2001, pp. WF4-1-WF4-3.

E. Golovchenko, A. N. Pilipetskii and N. S. Bergano, "Transmission properties of chirped return-to-zero pulses and nonlinear intersymbol interference in 10 Gb/s WDM transmission", in Proc. Optical Fiber Communication (OFC), Baltimore, MD, Mar. 2000,Paper FC3-1,. pp. 38-40.

N. S. Bergano, F. W. Kerfoot and C. R. Davidson, "Margin measurements in optical amplifier systems", IEEE Photon. Technol. Lett., vol. 5, no. 3, pp. 304-306, Mar. 1993.

S. D. Personick, "Receiver design for digital fiber optic communications systems", Bell Syst. Tech. J., vol. 52, no. 6, pp. 843-874, Jul./Aug. 1973.

M. Abramowitz, and I.A. Stegun, Eds. Handbook of Mathematical Functions With Formulas Graphs, and Mathematical Tables, Washington, DC: U.S. Dept. Commerce, 1972, p. 932.

M. Abramowitz, and I. A. Stegun, Eds. Handbook of Mathematical Functions With Formulas Graphs, and Mathematical Tables, Washington, DC: U.S. Dept. Commerce, 1972, p. 933.

"ITU-T Series O: Specifications of measuring equipment", Q-Factor Test Equipment to Estimate the Transmission Performance of Optical Channels,,

P. V. Kumar, et al. "Error-Control coding techniques and applications," in Optical Fiber Telecommunications IVA, I. P. Kaminow, and T. Li, Eds. San Diego, CA: Academic, 2002, ch. 17.

F. W. Kerfoot, "Forward error correction for optical transmission systems", presented at the Optical Fiber Communication Conf. (OFC), Los Angeles, CA, Short Course SC212, Mar. 2004.

N. S. Bergano, J. Aspell, C. R. Davidson, P. R. Trischitta, B. M. Nyman and F. W. Kerfoot, "A 9000 km 5 Gb/s and 21 000 km 2.4 Gb/s feasibility demonstration of transoceanic EDFA systems using a circulating loop", presented at the Optical Fiber Communications Conf., San Diego, CA, Paper PD-13, Feb. 18-22, 1991.

J. C. Feggeler, et al. "10 Gb/s WDM transmission measurements on an installed optical amplifier undersea cable system", Electron. Lett., vol. 31, no. 19, p. 1676, Sep. 14, 1995.

Q. Yu, L.-S. Yan, S. Lee, Y. Xie and A. E. Willner, "Loop-synchronous polarization scrambling technique for simulating polarization effects using recirculating fiber loops", J. Lightw. Technol., vol. 21, no. 7, p. 1593, Jul. 2003.

S. Lee, Q. Yu, L.-S. Yan, Y. Xie, O. H. Adamczyk and A. E. Willner, "A short recirculating fiber loop testbed with accurate reproduction of Maxwellian PMD statistics", in Proc. Optical Fiber Communication (OFC), Anaheim, CA, Mar. 2001, pp. WT2-1-WT2-3.

M. Nissov, J.-X. Cai, A. N. Pilipetskii, Y. Cai, C. R. Davidson, A. Lucero and N. S. Bergano, "Q-factor fluctuations in long distance circulating loop transmission experiments", presented at the Optical Fiber Communication Conf. (OFC), Los Angeles, CA, Paper FM6, Mar. 2004.

J. Schesser, S. M. Abbott, R. L. Easton and M. S. Stix, "Design requirements for the current generation of undersea cable systems", AT&T Tech. J., vol. 74, no. 1, p. 16, Jan./Feb. 1995.

C. R. Giles and E. Desurvire, "Modeling erbium-doped fiber amplifiers", J. Lightw. Technol., vol. 9, no. 2, pp. 271-283, Feb. 1991.

E. A. Golovchenko, A. N. Pilipetskii, N. S. Bergano, C. R. Davidson, F. I. Khatri, R. M. Kimball and V. J. Mazurczyk, "Modeling of transoceanic fiber-optic WDM communication systems", IEEE J. Sel. Topics Quantum Electron., vol. 6, no. 2, pp. 337-347, Mar./Apr. 2000.

S. Yamamoto, N. Edagawa, H. Taga, Y. Yoshida and H. Wakabayashi, "Observation of BER degradation due to fading in long-distance optical amplifier system", Electron. Lett., vol. 29, no. 2, pp. 209-210, Jan. 1993.

W. A. Atia and R. Bondurant, "Demonstration of return-to-zero signaling in both OOK and DPSK formats to improve receiver sensitivity in an optically preamplified receiver", in Proc. Lasers and Electro-Optics Society (LEOS) Annu. Meeting, San Francisco, CA, Nov. 1999,Paper TuM3,. pp. 226-227.

A. H. Gnauck and P. J. Winzer, "Optical phase-shift-keyed transmission", J. Lightw. Technol., vol. 23, no. 1, pp. 115-130, Jan. 2005.

J. X. Cai, et al. "A DWDM demonstration of 3.73 Tb/s over 11 000 km using 373 RZ-DPSK channels at 10 Gb/s", presented at the Optical Fiber Communication Conf. (OFC), Atlanta, GA, Post-Deadline Paper PD22, Mar. 2003.

D. Foursa, et al. "2.56 Tb/s (256 × 10 Gb/s) transmission over 11 000 km using hybrid Raman EDFAs with 80 nm of continuous bandwidth", presented at the Optical Fiber Communication Conf. (OFC), Anaheim, CA, Post-Deadline Paper PD FC3, 2002.

T. Mizuochi, et al. "Experimental demonstration of net coding gain of 10.1 dB using 12.4 Gb/s block turbo code with 3-bit soft decision", in Proc. Optical Fiber Communication Conf. (OFC), Atlanta, GA, Mar. 2003, pp. PD21-P1-3.

H. Kidorf, M. Nissov and D. Foursa, "Ultra-long-haul submarine and terrestrial application," in Raman Amplifiers for Telecommunications 2, M. Islam, Ed. New York: Springer-Verlag, 2004, ch. 17.

M. Ma, H. Kidorf, K. Rottwitt, F. W. Kerfoot and C. Davidson, "240-km repeater spacing in a 5280 km WDM system experiment using 8 × 2.5 Gb/s NRZ transmission", IEEE Photon. Technol. Lett., vol. 10, no. 6, pp. 893-895, Jun. 1998.

M. Nissov, C. R. Davidson, K. Rottwitt, R. Menges, P. C. Corbett, D. Innis and N. S. Bergano, "100 Gb/s (10 × 10 Gb/s) WDM transmission over 7200 km using distributed Raman amplification", in Proc. 11th Int. Conf. Integrated Optics and Optical Fibre Communications and 23rd Eur. Conf. Optical Communications, Edinburgh, U.K.,Sep. 1997, pp. 9-12.

G. Charlet, et al. "WDM transmission at 6 Tb/s capacity over transatlantic distance, using 42.7 Gb/s differential phase-shift keying without pulse carver", presented at the Optical Fiber Communication Conf. (OFC), Los Angeles, CA, Post-Deadline Paper PDP36, 2004.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.