Abstract

Signal-induced birefringence and dichroism in a tensile-strained bulk semiconductor optical amplifier (SOA) are demonstrated in a counterpropagation scheme. The polarization azimuth rotation and the change of ellipticity angle of the probe light are presented on the Poincaré sphere and can be calculated by the Stokes parameters. All-optical wavelength conversion (inverted/noninverted and upconversion/downconversion) based on cross polarization modulation (XPolM) in SOAs are investigated. It is shown that a bit error rate (BER) of <10-9 can be achieved and an extinction ratio of > 9 dB can be obtained at a bit rate of 2.488 Gb/s with a 231-1 non-return-to-zero (NRZ) pseudorandom bit sequence (PRBS). Because of the larger birefringence effect induced by the pump light in the longer wavelength range, upconversion shows better performance than downconversion. Compared with the noninverted case, inverted wavelength conversion shows better performance due to the positive contribution from cross gain modulation (XGM), which takes place simultaneously with XPolM.

© 2005 IEEE

PDF Article

References

  • View by:
  • |

  1. S. J. B. Yoo, "Wavelength conversion technologies for WDM network applications", J. Lightw. Technol., vol. 14, no. 6, p. 955, Jun. 1996.
  2. M. J. Connelly, Semiconductor Optical Amplifiers, Boston, MA: Kluwer, 2002, ch. 7.
  3. D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie and D. C. Rogers, "Nonlinear optics for high-speed digital information processing", Science, vol. 286, no. 5444, p. 1523, Nov. 1999.
  4. J. M. Wiesenfeld, B. Glance, J. S. Perion and A. H. Gnauck, "Wavelength conversion at 10 Gb/s using a semiconductor optical amplifier", IEEE Photon. Technol. Lett., vol. 5, no. 11, p. 1300, Nov. 1993.
  5. K. L. Hall, E. R. Thoen and E. P. Ippen, "Nonlinearities in active media," in Semiconductors and Semimetals, San Diego, CA: Academic, 1999,vol. 59, p. 83.
  6. M. F. C. Stephens, M. Asghari, R. V. Penty and I. H. White, "Demonstration of ultrafast all-optical wavelength conversion utilizing birefringence in semiconductor optical amplifiers", IEEE Photon. Technol. Lett., vol. 9, no. 4, p. 449, Apr. 1997.
  7. H. Soto, D. Erasme and G. Guekos, "Cross-polarization modulation in semiconductor optical amplifiers", IEEE Photon. Technol. Lett., vol. 11, no. 8, p. 970, Aug. 1999.
  8. M. Cardona, "Optical properties and band structure of germanium and zincblende-type semiconductors," in Atomic Structure and Properties of Solids, E. Burstein, Ed. New York: Academic, 1972, p. 514.
  9. S. Diez, C. Schmidt, R. Ludwig, H. G. Weber, P. Doussiere and T. Ducellier, "Effect of birefringence in a bulk semiconductor optical amplifier on four-wave mixing", IEEE Photon. Technol. Lett., vol. 10, no. 2, p. 212, Feb. 1998.
  10. G. P. Agrawal and N. K. Dutta, Semiconductor Lasers, 2nd ed. New York: Van Nostrand Reinhold, 1993.
  11. B. W. Hakki and T. L. Paoli, "Gain spectra in GaAs double-heterostructure injection lasers", J. Appl. Phys., vol. 46, no. 3, p. 1299, Mar. 1975.
  12. D. T. Cassidy, "Technique for measurement of the gain spectra of semiconductor diode lasers", J. Appl. Phys., vol. 56, no. 11, p. 3096, Dec. 1984.
  13. L. Q. Guo, "Broad-band antireflection coatings for improved grating-external-cavity diode laser performance", M.A.Sc. dissertation, Dept. Eng. Physics, McMaster Univ., Hamilton, ON, Canada, 2002.
  14. B. M. A. Rahman, S. S. A. Obayya and H. A. El-Mikati, "Minimization of modal birefringence in semiconductor optical guided-wave devices", Proc. Inst. Elect. Eng.-Optoelectron., vol. 147, no. 3, p. 151, Jun. 2000.
  15. N. Pfeffer, F. Charra and J. M. Nunzi, "Phase and frequency resolution of picosecond optical Kerr nonlinearities", Opt. Lett., vol. 16, no. 24, p. 1987, Dec. 1991.
  16. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, New York: Wiley, 1991, ch. 19.
  17. D. C. Hutchings, J. S. Aitchison and J. M. Arnold, "Nonlinear refractive coupling and vector solitons in anisotropic cubic media", J. Opt. Soc. Amer. B, Opt. Phys., vol. 14, no. 4, p. 869, Apr. 1997.
  18. Y. P. Svirko and N. I. Zheludev, Polarization of Light in Nonlinear Optics, New York: Wiley, 1998.
  19. M. Asghari, I. H. White and R. V. Penty, "Wavelength conversion using semiconductor optical amplifiers", J. Lightw. Technol., vol. 15, no. 7, p. 1181, Jul. 1997.
  20. C. S. Wong and H. K. Tsang, "Polarization-independent wavelength conversion at 10 Gb/s using birefringence switching in a semiconductor optical amplifier", IEEE Photon. Technol. Lett., vol. 15, no. 1, p. 87, Jan. 2003.
  21. H. G. Jerrard, "Modern description of polarized light: Matrix methods", Opt. Laser Technol., vol. 14, no. 6, p. 309, 1982.
  22. D. Goldstein, Polarized Light, 2nd ed. New York: Marcel Dekker, 2003, ch. 6.
  23. J. M. Wiesenfeld, A. H. Gnauck, G. Raybon and U. Koren, "High-speed multiple-quantum-well optical power amplifier", IEEE Photon. Technol. Lett., vol. 4, no. 7, p. 708, Jul. 1992.
  24. M. J. Hamp, "Asymmetry multiple quantum well lasers", Ph.D. dissertation, Dept. Eng. Physics, McMaster Univ., Hamilton, ON, Canada, 2000.
  25. M. A. Newkirk, B. I. Miller, U. Koren, M. G. Young, M. Chien, R. M. Jopson and C. A. Burrus, "1.5 µm multiquantum-well semiconductor optical amplifier with tensile and compressively strained wells for polarization-independent gain", IEEE Photon. Technol. Lett., vol. 5, no. 4, p. 406, Apr. 1993.
  26. J. Jacquet, P. Brosson, A. Olivier, A. Perales, A. Bodere and D. Leclerc, "Carrier-induced differential refractive index in GaInAsP-GaInAs separate confinement multiquantum well lasers", IEEE Photon. Technol. Lett., vol. 2, no. 9, p. 620, Sep. 1990.
  27. R. J. Manning, D. A. O. Davies, D. Cotter and J. K. Lucek, "Enhanced recovery rates in semiconductor laser amplifiers using optical pumping", Electron. Lett., vol. 30, no. 10, p. 787, May 1994.

Other (27)

S. J. B. Yoo, "Wavelength conversion technologies for WDM network applications", J. Lightw. Technol., vol. 14, no. 6, p. 955, Jun. 1996.

M. J. Connelly, Semiconductor Optical Amplifiers, Boston, MA: Kluwer, 2002, ch. 7.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie and D. C. Rogers, "Nonlinear optics for high-speed digital information processing", Science, vol. 286, no. 5444, p. 1523, Nov. 1999.

J. M. Wiesenfeld, B. Glance, J. S. Perion and A. H. Gnauck, "Wavelength conversion at 10 Gb/s using a semiconductor optical amplifier", IEEE Photon. Technol. Lett., vol. 5, no. 11, p. 1300, Nov. 1993.

K. L. Hall, E. R. Thoen and E. P. Ippen, "Nonlinearities in active media," in Semiconductors and Semimetals, San Diego, CA: Academic, 1999,vol. 59, p. 83.

M. F. C. Stephens, M. Asghari, R. V. Penty and I. H. White, "Demonstration of ultrafast all-optical wavelength conversion utilizing birefringence in semiconductor optical amplifiers", IEEE Photon. Technol. Lett., vol. 9, no. 4, p. 449, Apr. 1997.

H. Soto, D. Erasme and G. Guekos, "Cross-polarization modulation in semiconductor optical amplifiers", IEEE Photon. Technol. Lett., vol. 11, no. 8, p. 970, Aug. 1999.

M. Cardona, "Optical properties and band structure of germanium and zincblende-type semiconductors," in Atomic Structure and Properties of Solids, E. Burstein, Ed. New York: Academic, 1972, p. 514.

S. Diez, C. Schmidt, R. Ludwig, H. G. Weber, P. Doussiere and T. Ducellier, "Effect of birefringence in a bulk semiconductor optical amplifier on four-wave mixing", IEEE Photon. Technol. Lett., vol. 10, no. 2, p. 212, Feb. 1998.

G. P. Agrawal and N. K. Dutta, Semiconductor Lasers, 2nd ed. New York: Van Nostrand Reinhold, 1993.

B. W. Hakki and T. L. Paoli, "Gain spectra in GaAs double-heterostructure injection lasers", J. Appl. Phys., vol. 46, no. 3, p. 1299, Mar. 1975.

D. T. Cassidy, "Technique for measurement of the gain spectra of semiconductor diode lasers", J. Appl. Phys., vol. 56, no. 11, p. 3096, Dec. 1984.

L. Q. Guo, "Broad-band antireflection coatings for improved grating-external-cavity diode laser performance", M.A.Sc. dissertation, Dept. Eng. Physics, McMaster Univ., Hamilton, ON, Canada, 2002.

B. M. A. Rahman, S. S. A. Obayya and H. A. El-Mikati, "Minimization of modal birefringence in semiconductor optical guided-wave devices", Proc. Inst. Elect. Eng.-Optoelectron., vol. 147, no. 3, p. 151, Jun. 2000.

N. Pfeffer, F. Charra and J. M. Nunzi, "Phase and frequency resolution of picosecond optical Kerr nonlinearities", Opt. Lett., vol. 16, no. 24, p. 1987, Dec. 1991.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, New York: Wiley, 1991, ch. 19.

D. C. Hutchings, J. S. Aitchison and J. M. Arnold, "Nonlinear refractive coupling and vector solitons in anisotropic cubic media", J. Opt. Soc. Amer. B, Opt. Phys., vol. 14, no. 4, p. 869, Apr. 1997.

Y. P. Svirko and N. I. Zheludev, Polarization of Light in Nonlinear Optics, New York: Wiley, 1998.

M. Asghari, I. H. White and R. V. Penty, "Wavelength conversion using semiconductor optical amplifiers", J. Lightw. Technol., vol. 15, no. 7, p. 1181, Jul. 1997.

C. S. Wong and H. K. Tsang, "Polarization-independent wavelength conversion at 10 Gb/s using birefringence switching in a semiconductor optical amplifier", IEEE Photon. Technol. Lett., vol. 15, no. 1, p. 87, Jan. 2003.

H. G. Jerrard, "Modern description of polarized light: Matrix methods", Opt. Laser Technol., vol. 14, no. 6, p. 309, 1982.

D. Goldstein, Polarized Light, 2nd ed. New York: Marcel Dekker, 2003, ch. 6.

J. M. Wiesenfeld, A. H. Gnauck, G. Raybon and U. Koren, "High-speed multiple-quantum-well optical power amplifier", IEEE Photon. Technol. Lett., vol. 4, no. 7, p. 708, Jul. 1992.

M. J. Hamp, "Asymmetry multiple quantum well lasers", Ph.D. dissertation, Dept. Eng. Physics, McMaster Univ., Hamilton, ON, Canada, 2000.

M. A. Newkirk, B. I. Miller, U. Koren, M. G. Young, M. Chien, R. M. Jopson and C. A. Burrus, "1.5 µm multiquantum-well semiconductor optical amplifier with tensile and compressively strained wells for polarization-independent gain", IEEE Photon. Technol. Lett., vol. 5, no. 4, p. 406, Apr. 1993.

J. Jacquet, P. Brosson, A. Olivier, A. Perales, A. Bodere and D. Leclerc, "Carrier-induced differential refractive index in GaInAsP-GaInAs separate confinement multiquantum well lasers", IEEE Photon. Technol. Lett., vol. 2, no. 9, p. 620, Sep. 1990.

R. J. Manning, D. A. O. Davies, D. Cotter and J. K. Lucek, "Enhanced recovery rates in semiconductor laser amplifiers using optical pumping", Electron. Lett., vol. 30, no. 10, p. 787, May 1994.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.