Abstract

A generalized conversion matrix (GCM) and numerical analysis are used to study the distortions suffered by a linear frequency-modulated radio frequency (RF) pulse while propagating through photonic links to be used in wideband phased arrays. The analysis shows the effects of dispersion of all orders, coherent crosstalk and nonlinearity of the optical components on the RF pulse, and the high performance needed to achieve acceptable RF performance of the temporal (impulse) response. The effects of the electrical-to-optical (E/O) and optical-to-electrical (O/E) conversions are also considered. Using the GCM, the optical amplitude and phase fluctuations are converted into their RF counterparts, thereby reducing the optical problem into the well-understood RF domain. A photonic wavelength-controlled true delay device is experimentally shown to achieve good RF performance over a 4-GHz bandwidth, with predicted sidelobe levels below 30 dB.

© 2005 IEEE

PDF Article

References

  • View by:
  • |

  1. H. Zmuda, E. N. Toughlian, M. A. Jones and P. M. Payson, "Photonic architectures for broadband adaptive nulling with linear and conformal phased array antennas", Fiber Integr. Opt., vol. 19, no. 2, pp. 137-154, Apr. 2000.
  2. R. J. Mailloux, "Technology for array control", in Proc. IEEE Int. Symp. Phased Array Systems and Technology, Boston, MA, 2003, pp. 35-39.
  3. C. Cox, Analog Optical Links, Theory and Practice, Cambridge, U.K.: Cambridge Univ. Press, 2004.
  4. J. R. Klauder, A. C. Price, S. Darlington and W. J. Albersheim, "The theory and design of chirp radars", Bell Syst. Tech. J., vol. 39, no. 4, pp. 745-802, Jul. 1960.
  5. R. Rotman, O. Raz and M. Tur, "Small signal analysis for analog optical links with arbitrary optical transfer function", Electron. Lett., vol. 40, no. 8, pp. 504-505, Apr. 2004.
  6. P. Lacomme, J.-P. Hardange, J. C. Marchais and E. Normant, Air and Spaceborne Radar Systems-An Introduction, Norwich, NY: William Andrew, 2001, ch. 16, pp. 266-271.
  7. N. J. Korma, E. B. Herman and J. R. Ford, "Analysis of microwave antenna sidelobes", RCA Rev., vol. 13, pp. 323-334, Sep. 1952.
  8. J. Wang and K. Petermann, "Small signal analysis for dispersive optical fiber communication systems", J. Lightw. Technol., vol. 10, no. 1, pp. 96-100, Jan. 1992.
  9. A. V. T. Cartaxao and J. A. P. Morgado, "Relative intensity noise induced by fiber dispersion near zero-dispersion wavelength in linear single mode fibers", in Proc. SPIE, vol. 3491, Ottawa, ON, Canada, 1998, pp. 521-526.
  10. R. Mailloux, Phased Array Handbook, Norwood, MA: Artech House, 2000, ch. 3, p. 121.
  11. O. Raz, R. Rotman, Y. Danziger and M. Tur, "Implementation of photonic true time delay using high order mode dispersion compensating fibers", IEEE Photon. Technol. Lett., vol. 16, no. 5, pp. 1367-1369, May 2004.
  12. D. Derickson, Fiber Optic Test Measurement, Upper Saddle River, NJ: Prentice-Hall, 1998.
  13. O. Raz, R. Rotman and M. Tur, "Wavelength-controlled photonic true time delay for wideband applications", IEEE Photon. Technol. Lett., vol. 17, no. 5, pp. 1076-1078, May 2004.
  14. N. A. Riza and S. Sumriddetchkajorn, "Micromechanics-based wavelength-sensitive photonic beam control architectures and applications", Appl. Opt., vol. 39, no. 6, pp. 919-932, Feb. 2000.
  15. G. Agrawal, Nonlinear Fiber Optics-Optics & Fiber Series, San Diego, CA: Academic, 1989.
  16. A. V. T. Cartaxo, B. Wedding and W. Idler, "Influence of fiber nonlinearity on the fiber transfer function: Theoretical and experimental analysis", J. Lightw. Technol., vol. 17, no. 10, pp. 1806-1812, Oct. 1999.
  17. F. Ramos, "Frequency transfer function of dispersive and nonlinear single-mode optical fibers in microwave optical systems", IEEE Photon. Technol. Lett., vol. 12, no. 5, pp. 548-551, May 2000.
  18. "VPItransmissionMaker", VPI systems, Holmdel, NJ,
  19. S. J. Matthews, "Rich & varied", Laser Focus World, vol. 39, no. 10, pp. 82-86, Oct. 2003.

Other (19)

H. Zmuda, E. N. Toughlian, M. A. Jones and P. M. Payson, "Photonic architectures for broadband adaptive nulling with linear and conformal phased array antennas", Fiber Integr. Opt., vol. 19, no. 2, pp. 137-154, Apr. 2000.

R. J. Mailloux, "Technology for array control", in Proc. IEEE Int. Symp. Phased Array Systems and Technology, Boston, MA, 2003, pp. 35-39.

C. Cox, Analog Optical Links, Theory and Practice, Cambridge, U.K.: Cambridge Univ. Press, 2004.

J. R. Klauder, A. C. Price, S. Darlington and W. J. Albersheim, "The theory and design of chirp radars", Bell Syst. Tech. J., vol. 39, no. 4, pp. 745-802, Jul. 1960.

R. Rotman, O. Raz and M. Tur, "Small signal analysis for analog optical links with arbitrary optical transfer function", Electron. Lett., vol. 40, no. 8, pp. 504-505, Apr. 2004.

P. Lacomme, J.-P. Hardange, J. C. Marchais and E. Normant, Air and Spaceborne Radar Systems-An Introduction, Norwich, NY: William Andrew, 2001, ch. 16, pp. 266-271.

N. J. Korma, E. B. Herman and J. R. Ford, "Analysis of microwave antenna sidelobes", RCA Rev., vol. 13, pp. 323-334, Sep. 1952.

J. Wang and K. Petermann, "Small signal analysis for dispersive optical fiber communication systems", J. Lightw. Technol., vol. 10, no. 1, pp. 96-100, Jan. 1992.

A. V. T. Cartaxao and J. A. P. Morgado, "Relative intensity noise induced by fiber dispersion near zero-dispersion wavelength in linear single mode fibers", in Proc. SPIE, vol. 3491, Ottawa, ON, Canada, 1998, pp. 521-526.

R. Mailloux, Phased Array Handbook, Norwood, MA: Artech House, 2000, ch. 3, p. 121.

O. Raz, R. Rotman, Y. Danziger and M. Tur, "Implementation of photonic true time delay using high order mode dispersion compensating fibers", IEEE Photon. Technol. Lett., vol. 16, no. 5, pp. 1367-1369, May 2004.

D. Derickson, Fiber Optic Test Measurement, Upper Saddle River, NJ: Prentice-Hall, 1998.

O. Raz, R. Rotman and M. Tur, "Wavelength-controlled photonic true time delay for wideband applications", IEEE Photon. Technol. Lett., vol. 17, no. 5, pp. 1076-1078, May 2004.

N. A. Riza and S. Sumriddetchkajorn, "Micromechanics-based wavelength-sensitive photonic beam control architectures and applications", Appl. Opt., vol. 39, no. 6, pp. 919-932, Feb. 2000.

G. Agrawal, Nonlinear Fiber Optics-Optics & Fiber Series, San Diego, CA: Academic, 1989.

A. V. T. Cartaxo, B. Wedding and W. Idler, "Influence of fiber nonlinearity on the fiber transfer function: Theoretical and experimental analysis", J. Lightw. Technol., vol. 17, no. 10, pp. 1806-1812, Oct. 1999.

F. Ramos, "Frequency transfer function of dispersive and nonlinear single-mode optical fibers in microwave optical systems", IEEE Photon. Technol. Lett., vol. 12, no. 5, pp. 548-551, May 2000.

"VPItransmissionMaker", VPI systems, Holmdel, NJ,

S. J. Matthews, "Rich & varied", Laser Focus World, vol. 39, no. 10, pp. 82-86, Oct. 2003.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.