Abstract

Long-period fiber gratings (LPGs) have been inscribed in nitrogen-doped fibers by electrical arc discharge. The influence of drawing tension as well as external load applied during arc discharge on coupling strength has been investigated. The influence of drawing tension on the grating's coupling strength is found to be negligible, whereas the coupling strength increases considerably with external load. Tomographic stress profiles of the fiber have been recorded before and after electric arc discharge. The axial stress modulation in the core region of the grating was found to be smaller than 10 MPa and is thus too small to be the dominating mechanism for grating formation.

© 2005 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription