Abstract

Since its introduction over a decade ago, the spun birefringent single-mode optical fiber is increasingly being considered for current-sensing applications. In this paper, we study the behavior of such a fiber when it is bent into a sensing coil. We show that bending weakens the polarization-holding capability of the spun birefringent fiber and causes the average polarization state to slowly oscillate along the fiber, potentially degrading the performance of the current sensor. The amplitude of this oscillation increases with tighter bending. Both the amplitude and the period of this oscillation, which are important parameters for designing current-sensing coils, are calculated by applying an appropriate perturbation theory. An experiment confirming the theory is also reported.

© 2005 IEEE

PDF Article

References

  • View by:
  • |

  1. Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan and D. A. Jackson, "Recent progress in optical current sensing technologies", Rev. Sci. Instrum., vol. 66, no. 5, pp. 3097-3111, May 1995.
  2. D. Tang, A. H. Rose, G. W. Day and S. M. Etzel, "Annealing of linear birefringence in single-mode fiber coils: Application to optical fiber current sensors", J. Lightw. Technol., vol. 9, no. 8, pp. 1031-1037, Aug. 1991.
  3. K. Bohnert, P. Gabus, J. Nehring and H. Brändle, "Temperature and vibration insensitive fiber-optic current sensor", J. Lightw. Technol., vol. 20, no. 2, pp. 267-276, Feb. 2002.
  4. K. Kurosawa and I. Masuda, "Faraday effect current sensor using flint glass fiber for the sensing element", in Proc. 9th Int. Conf. Optical Fiber Sensors, Florence, Italy, 1993, pp. 415-418.
  5. F. Maystre and A. Bertholds, "Magneto-optic current sensor using a helical fiber Fabry-Pérot resonator", in Proc. 6th Int. Conf. Optical Fiber Sensors, vol. 44, Proceedings in Physics, Berlin, Germany, 1989, pp. 267-272.
  6. S. X. Short, J. U. de Arruda, A. A. Tselikov and J. Blake, "Elimination of birefringence induced scale factor errors in the in-line Sagnac interferometer current sensor", J. Lightw. Technol., vol. 16, no. 10, pp. 1844-1850, Oct. 1998.
  7. R. I. Laming and D. N. Payne, "Electric current sensors employing spun highly birefringent optical fibers", J. Lightw. Technol., vol. 7, no. 12, pp. 2084-2094, Dec. 1989.
  8. I. Clarke, D. Geake, I. Bassett, S. Poole and A. Stokes, "A current sensor using spun birefringent fibre in a Sagnac configuration", in Proc. Int. Conf. Opt. Fiber Sensirs (OFS-9), Firenze, Italy,May 4-6 1993, pp. 167-170.
  9. T. R. Wolinski, "Stress effects in twisted highly birefringent fibers", Proc. SPIE, vol. 2070, pp. 392-403, Mar. 1994.
  10. V. G. Izraelian, "Magnetic field and current sensors with robust spun fiber", Proc. SPIE, vol. 3541, pp. 209-216, Feb. 1999.
  11. I. G. Clarke, "Temperature-stable spun elliptic-core optical-fiber current transducer", Opt. Lett., vol. 18, no. 2, pp. 158-160, Jan. 1993.
  12. P. McIntyre and A. W. Snyder, "Light propagation in twisted anisotropic media: Application to photoreceptors", J. Opt. Soc. Amer., vol. 68, no. 2, pp. 149-157, Feb. 1978.
  13. R. Ulrich, S. Rashleigh and W. Eickhoff, "Bending-induced birefringence in single-mode fibers", Opt. Lett., vol. 5, no. 6, pp. 273-275, Jun. 1980.
  14. S. R. Barone, M. A. Narcowich and F. J. Narkowich, "Floquet theory and applications", Phys. Rev. A, vol. 15, no. 3, pp. 1109-1125, Mar. 1977.

Other (14)

Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan and D. A. Jackson, "Recent progress in optical current sensing technologies", Rev. Sci. Instrum., vol. 66, no. 5, pp. 3097-3111, May 1995.

D. Tang, A. H. Rose, G. W. Day and S. M. Etzel, "Annealing of linear birefringence in single-mode fiber coils: Application to optical fiber current sensors", J. Lightw. Technol., vol. 9, no. 8, pp. 1031-1037, Aug. 1991.

K. Bohnert, P. Gabus, J. Nehring and H. Brändle, "Temperature and vibration insensitive fiber-optic current sensor", J. Lightw. Technol., vol. 20, no. 2, pp. 267-276, Feb. 2002.

K. Kurosawa and I. Masuda, "Faraday effect current sensor using flint glass fiber for the sensing element", in Proc. 9th Int. Conf. Optical Fiber Sensors, Florence, Italy, 1993, pp. 415-418.

F. Maystre and A. Bertholds, "Magneto-optic current sensor using a helical fiber Fabry-Pérot resonator", in Proc. 6th Int. Conf. Optical Fiber Sensors, vol. 44, Proceedings in Physics, Berlin, Germany, 1989, pp. 267-272.

S. X. Short, J. U. de Arruda, A. A. Tselikov and J. Blake, "Elimination of birefringence induced scale factor errors in the in-line Sagnac interferometer current sensor", J. Lightw. Technol., vol. 16, no. 10, pp. 1844-1850, Oct. 1998.

R. I. Laming and D. N. Payne, "Electric current sensors employing spun highly birefringent optical fibers", J. Lightw. Technol., vol. 7, no. 12, pp. 2084-2094, Dec. 1989.

I. Clarke, D. Geake, I. Bassett, S. Poole and A. Stokes, "A current sensor using spun birefringent fibre in a Sagnac configuration", in Proc. Int. Conf. Opt. Fiber Sensirs (OFS-9), Firenze, Italy,May 4-6 1993, pp. 167-170.

T. R. Wolinski, "Stress effects in twisted highly birefringent fibers", Proc. SPIE, vol. 2070, pp. 392-403, Mar. 1994.

V. G. Izraelian, "Magnetic field and current sensors with robust spun fiber", Proc. SPIE, vol. 3541, pp. 209-216, Feb. 1999.

I. G. Clarke, "Temperature-stable spun elliptic-core optical-fiber current transducer", Opt. Lett., vol. 18, no. 2, pp. 158-160, Jan. 1993.

P. McIntyre and A. W. Snyder, "Light propagation in twisted anisotropic media: Application to photoreceptors", J. Opt. Soc. Amer., vol. 68, no. 2, pp. 149-157, Feb. 1978.

R. Ulrich, S. Rashleigh and W. Eickhoff, "Bending-induced birefringence in single-mode fibers", Opt. Lett., vol. 5, no. 6, pp. 273-275, Jun. 1980.

S. R. Barone, M. A. Narcowich and F. J. Narkowich, "Floquet theory and applications", Phys. Rev. A, vol. 15, no. 3, pp. 1109-1125, Mar. 1977.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.