Abstract

Since its introduction over a decade ago, the spun birefringent single-mode optical fiber is increasingly being considered for current-sensing applications. In this paper, we study the behavior of such a fiber when it is bent into a sensing coil. We show that bending weakens the polarization-holding capability of the spun birefringent fiber and causes the average polarization state to slowly oscillate along the fiber, potentially degrading the performance of the current sensor. The amplitude of this oscillation increases with tighter bending. Both the amplitude and the period of this oscillation, which are important parameters for designing current-sensing coils, are calculated by applying an appropriate perturbation theory. An experiment confirming the theory is also reported.

© 2005 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription