Abstract

There have been numerous attempts to determine the channel capacity of a nonlinear fiber-optic communication channel. The main approach was to consider amplified spontaneous emission (ASE) noise as a predominant effect and to observe the fiber nonlinearities as the perturbation of a linear case or as the multiplicative noise. In this paper, the achievable information rates for high-speed optical transmission (40 Gb/s and above) are calculated using the finite-state-machine approach. In calculations, the combined effect of ASE noise, Kerr nonlinearity [self-phase modulation (SPM), intrachannel four-wave mixing (IFWM), intrachannel cross-phase modulation (IXPM)], stimulated Raman scattering (SRS), chromatic dispersion, and (optical/electrical) filtering is taken into account.

© 2005 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription