Abstract

There have been numerous attempts to determine the channel capacity of a nonlinear fiber-optic communication channel. The main approach was to consider amplified spontaneous emission (ASE) noise as a predominant effect and to observe the fiber nonlinearities as the perturbation of a linear case or as the multiplicative noise. In this paper, the achievable information rates for high-speed optical transmission (40 Gb/s and above) are calculated using the finite-state-machine approach. In calculations, the combined effect of ASE noise, Kerr nonlinearity [self-phase modulation (SPM), intrachannel four-wave mixing (IFWM), intrachannel cross-phase modulation (IXPM)], stimulated Raman scattering (SRS), chromatic dispersion, and (optical/electrical) filtering is taken into account.

© 2005 IEEE

PDF Article

References

  • View by:
  • |

  1. J. M. Kahn and K.-P. Ho, "Spectral efficiency limits and modulation/detection techniques for DWDM systems", IEEE J. Sel. Topics Quantum Electron., vol. 10, no. 2, pp. 259-272, Mar./Apr. 2004.
  2. K. S. Turitsyn, S. A. Derevyanko, I. V. Yurkevich and S. K. Turitsyn, "Information capacity of optical fiber channels with zero average dispersion", Phys. Rev. Lett., vol. 91, no. 20, p. 203901, Nov. 2003.
  3. J. Tang, "The channel capacity of a multispan DWDM system employing dispersive nonlinear optical fibers and an ideal coherent optical receiver", J. Lightw. Technol., vol. 20, no. 7, pp. 1095-1101, Jul. 2002.
  4. E. E. Narimanov and P. Mitra, "The channel capacity of a fiber optics communication system: Perturbation theory", J. Lightw. Technol., vol. 20, no. 3, pp. 530-537, Mar. 2002.
  5. A. Mecozzi and M. Shtaif, "On the capacity of intensity modulated systems using optical amplifiers", IEEE Photon. Technol. Lett., vol. 13, no. 9, pp. 1029-1031, Sep. 2001.
  6. P. P. Mitra and J. B. Stark, "Nonlinear limits to the information capacity of optical fiber communications", Nature, vol. 411, no. 6841, pp. 1027-1030, Jun. 2001.
  7. J. Tang, "The Shannon channel capacity of dispersion-free nonlinear optical fiber transmission", J. Lightw. Technol., vol. 19, no. 8, pp. 1104-1109, Aug. 2001.
  8. J. Tang, "The multispan effects of Kerr nonlinearity and amplifier noises on Shannon channel capacity for a dispersion-free nonlinear optical fiber", J. Lightw. Technol., vol. 19, no. 8, pp. 1110-1115, Aug. 2001.
  9. K.-P. Ho and J. M. Kahn, "Channel capacity of WDM systems using constant-intensity modulation formats", in Proc. Optical Fiber Communication (OFC), Anaheim, CA, 2002,Paper ThGG85,. pp. 731-733.
  10. J. M. Kahn and K.-P. Ho, "Ultimate spectral efficiency limits in DWDM systems", in Proc. Optoelectronics Communications Conf., Yokohama, Japan,Jul. 8-12 2002, pp. 552-553.
  11. I. B. Djordjevic and B. Vasic, "Approaching Shannon's capacity limits of fiber optics communications channels using short LDPC codes", presented at the Conf. Lasers and Electro-Optics/Int. Quantum Electronics Conf. (CLEO/IQEC), San Francisco, CA, Paper CWA7,.
  12. E. Narimanov and P. Patel, "Channel capacity of fiber optics communications systems: WDM vs. TDM", in Proc. Conf. Lasers and Electro-Optics (CLEO), Baltimore, MD, 2003, pp. 1666-1668.
  13. J. Li, "On the achievable information rate of asymmetric optical fiber channels with amplifier spontaneous emission noise", in Proc. IEEE Military Communications Conf. (MILCOM), Boston, MA, Oct. 2003, pp. 124-129.
  14. G. P. Agrawal, Nonlinear Fiber Optics, San Diego, CA: Academic, 2001.
  15. M. S. Pinsker, Information and Information Stability of Random Variables and Processes, San Francisco, CA: Holden Day, 1964.
  16. S. K. Turritsyn, et al. "Averaged model and integrable limits in nonlinear double-periodic Hamiltonian systems", Phys. Rev. E, vol. 61, no. 3, pp. 3127-3132, Mar. 2000.
  17. D. Arnold, A. Kavcic, H.-A. Loeliger, P. O. Vontobel and W. Zeng, "Simulation-based computation of information rates: Upper and lower bounds", in Proc. IEEE Int. Symp. Information Theory (ISIT), Yokohama, Japan, 2003, p. 119.
  18. D. Arnold and H.-A. Loeliger, "On the information rate of binary-input channels with memory", in Proc. Int. Conf. Communications, Helsinki, Finland,Jun. 11-14 2001, pp. 2692-2695.
  19. H. D. Pfitser, J. B. Soriaga and P. H. Siegel, "On the achievable information rates of finite state ISI channels", in Proc. Global Telecommunications (GLOBECOM), San Antonio, TX, Nov. 25-29 2001, pp. 2992-2996.
  20. V. Sharma and S. K. Singh, "Entropy and channel capacity in the regenerative setup with applications to Markov channels", in Proc. IEEE Int. Symp. Information Theory, Washington, DC, Jun. 24-29 2001, p. 283.
  21. L. R. Bahl, J. Cocke, F. Jelinek and J. Raviv, "Optimal decoding of linear codes for minimizing symbol error rate", IEEE Trans. Inf. Theory, vol. IT-20, no. 2, pp. 284-287, Mar. 1974.
  22. J. G. Proakis, Digital Communications, Boston, MA: McGraw-Hill, 2001.
  23. B. Vasic, V. Rao, I. B. Djordjevic, R. Kostuk and I. Gabitov, "Ghost pulse reduction in 40 Gb/s systems using line coding", IEEE Photon. Technol. Lett., vol. 16, no. 7, pp. 1784-1786, Jul. 2004.
  24. I. B. Djordjevic, S. K. Chilappagari and B. Vasic, "Suppression of intrachannel nonlinear effects using pseudo-ternary constrained codes", J. Lightw. Technol., to be published,
  25. B. Vasic, I. B. Djordjevic and V. S. Rao, "Advanced detection and coding techniques for nonlinear intersymbol interference cancellation in 40 Gb/s systems", Inst. Elect. Eng.-Optoelectron.,

Other (25)

J. M. Kahn and K.-P. Ho, "Spectral efficiency limits and modulation/detection techniques for DWDM systems", IEEE J. Sel. Topics Quantum Electron., vol. 10, no. 2, pp. 259-272, Mar./Apr. 2004.

K. S. Turitsyn, S. A. Derevyanko, I. V. Yurkevich and S. K. Turitsyn, "Information capacity of optical fiber channels with zero average dispersion", Phys. Rev. Lett., vol. 91, no. 20, p. 203901, Nov. 2003.

J. Tang, "The channel capacity of a multispan DWDM system employing dispersive nonlinear optical fibers and an ideal coherent optical receiver", J. Lightw. Technol., vol. 20, no. 7, pp. 1095-1101, Jul. 2002.

E. E. Narimanov and P. Mitra, "The channel capacity of a fiber optics communication system: Perturbation theory", J. Lightw. Technol., vol. 20, no. 3, pp. 530-537, Mar. 2002.

A. Mecozzi and M. Shtaif, "On the capacity of intensity modulated systems using optical amplifiers", IEEE Photon. Technol. Lett., vol. 13, no. 9, pp. 1029-1031, Sep. 2001.

P. P. Mitra and J. B. Stark, "Nonlinear limits to the information capacity of optical fiber communications", Nature, vol. 411, no. 6841, pp. 1027-1030, Jun. 2001.

J. Tang, "The Shannon channel capacity of dispersion-free nonlinear optical fiber transmission", J. Lightw. Technol., vol. 19, no. 8, pp. 1104-1109, Aug. 2001.

J. Tang, "The multispan effects of Kerr nonlinearity and amplifier noises on Shannon channel capacity for a dispersion-free nonlinear optical fiber", J. Lightw. Technol., vol. 19, no. 8, pp. 1110-1115, Aug. 2001.

K.-P. Ho and J. M. Kahn, "Channel capacity of WDM systems using constant-intensity modulation formats", in Proc. Optical Fiber Communication (OFC), Anaheim, CA, 2002,Paper ThGG85,. pp. 731-733.

J. M. Kahn and K.-P. Ho, "Ultimate spectral efficiency limits in DWDM systems", in Proc. Optoelectronics Communications Conf., Yokohama, Japan,Jul. 8-12 2002, pp. 552-553.

I. B. Djordjevic and B. Vasic, "Approaching Shannon's capacity limits of fiber optics communications channels using short LDPC codes", presented at the Conf. Lasers and Electro-Optics/Int. Quantum Electronics Conf. (CLEO/IQEC), San Francisco, CA, Paper CWA7,.

E. Narimanov and P. Patel, "Channel capacity of fiber optics communications systems: WDM vs. TDM", in Proc. Conf. Lasers and Electro-Optics (CLEO), Baltimore, MD, 2003, pp. 1666-1668.

J. Li, "On the achievable information rate of asymmetric optical fiber channels with amplifier spontaneous emission noise", in Proc. IEEE Military Communications Conf. (MILCOM), Boston, MA, Oct. 2003, pp. 124-129.

G. P. Agrawal, Nonlinear Fiber Optics, San Diego, CA: Academic, 2001.

M. S. Pinsker, Information and Information Stability of Random Variables and Processes, San Francisco, CA: Holden Day, 1964.

S. K. Turritsyn, et al. "Averaged model and integrable limits in nonlinear double-periodic Hamiltonian systems", Phys. Rev. E, vol. 61, no. 3, pp. 3127-3132, Mar. 2000.

D. Arnold, A. Kavcic, H.-A. Loeliger, P. O. Vontobel and W. Zeng, "Simulation-based computation of information rates: Upper and lower bounds", in Proc. IEEE Int. Symp. Information Theory (ISIT), Yokohama, Japan, 2003, p. 119.

D. Arnold and H.-A. Loeliger, "On the information rate of binary-input channels with memory", in Proc. Int. Conf. Communications, Helsinki, Finland,Jun. 11-14 2001, pp. 2692-2695.

H. D. Pfitser, J. B. Soriaga and P. H. Siegel, "On the achievable information rates of finite state ISI channels", in Proc. Global Telecommunications (GLOBECOM), San Antonio, TX, Nov. 25-29 2001, pp. 2992-2996.

V. Sharma and S. K. Singh, "Entropy and channel capacity in the regenerative setup with applications to Markov channels", in Proc. IEEE Int. Symp. Information Theory, Washington, DC, Jun. 24-29 2001, p. 283.

L. R. Bahl, J. Cocke, F. Jelinek and J. Raviv, "Optimal decoding of linear codes for minimizing symbol error rate", IEEE Trans. Inf. Theory, vol. IT-20, no. 2, pp. 284-287, Mar. 1974.

J. G. Proakis, Digital Communications, Boston, MA: McGraw-Hill, 2001.

B. Vasic, V. Rao, I. B. Djordjevic, R. Kostuk and I. Gabitov, "Ghost pulse reduction in 40 Gb/s systems using line coding", IEEE Photon. Technol. Lett., vol. 16, no. 7, pp. 1784-1786, Jul. 2004.

I. B. Djordjevic, S. K. Chilappagari and B. Vasic, "Suppression of intrachannel nonlinear effects using pseudo-ternary constrained codes", J. Lightw. Technol., to be published,

B. Vasic, I. B. Djordjevic and V. S. Rao, "Advanced detection and coding techniques for nonlinear intersymbol interference cancellation in 40 Gb/s systems", Inst. Elect. Eng.-Optoelectron.,

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.