Abstract

The Raman response of germanosilicate fibers is presented. This includes not only the material dependence but also the relation between the spatial-mode profile of the light and the Raman response in the time and frequency domain. From the Raman-gain spectrum, information is derived related to the nonlinear refractive index due to nuclear motions and the Raman response function in the time domain. It is demonstrated that the Raman-gain coefficient may be reduced up to 60% if the signal propagates in the fundamental mode while the pump alternates between the fundamental mode and a higher order mode. A simple model shows that the time response related to the decay of phonons is significantly larger in germanate glass relative to silica glass. From the Raman gain, it is found that the contribution to the nonlinear refractive index from nuclear motions is reduced by a factor of 2 in germanate relative to silica glass.

© 2005 IEEE

PDF Article

References

  • View by:
  • |

  1. R. H. Stolen and E. P. Ippen, "Raman gain in glass optical waveguides", Appl. Phys. Lett., vol. 22, no. 6, pp. 276-281, 1973.
  2. L. F. Mollenauer, R. H. Stolen and M. N. Islam, "Experimental demonstration of soliton propagation in long fibers: Loss compensated by Raman gain", Opt. Lett., vol. 10, no. 5, p. 229, May 1985.
  3. P. B. Hansen, L. Eskildsen, S. G. Grubb, S. K. Korotky, T. A. Strasser, J. E. J. Alphonsus, J. J. Veselka, D. J. DiGiovanni, D. W. Peckham and D. Truxal, "442 km repeaterless transmission in a 10 Gbit/s system experiment", Electron. Lett., vol. 32, no. 11, pp. 1018-1019, May 1996.
  4. T. N. Nielsen, A. J. Stentz, K. Rottwitt, D. S. Vengsarkar, Z. J. Chen, P. B. Hansen, J. H. Park, K. S. Feder, S. Cabot, S. Stulz, D. W. Peckham, L. Hsu, C. K. Kan, A. F. Judy, S. Y. Park, L. E. Nelson and L. Gruner-Nielsen, "3.28-Tb/s transmission over 3 × 100 km of nonzero-dispersion fiber using dual C-and L-band distributed Raman amplification", IEEE Photon. Technol. Lett., vol. 12, no. 8, pp. 1079-1081, Aug. 2000.
  5. B. Chu, L. Leng, L. E. Nelson, L. Gruner-Nielsen, Y. Qian, J. Bromage, S. Stultz, S. Kado, Y. Emori, S. Namiki, P. Gaarde, A. Judy, B. Palsdottir and R. L. LingleJr., "3.2 Tb/s (80 × 42.7 Gb/s) transmission over 20 × 100 km of non-zero dispersion fiber with simultaneous C + L band dispersion compensation", in Optical Fiber Communication (OFC), Anaheim, CA, 2002, pp. FC8-1-FC8-3.
  6. M. Nissov, C. R. Davidson, K. Rottwitt, R. Menges, P. C. Corbett, D. Innis and N. S. Bergano, "100 Gb/s (10 × 10 Gb/s) WDM transmission over 7200 km using distributed Raman amplification", in Eur. Conf. Optical Communication (ECOC), Edinburgh, U.K., 1997, pp. 9-12.
  7. B. Mikkelsen, G. Raybon, R.-J. Essiambre, A. J. Stentz, T. N. Nielsen, D. W. Peckham, L. Hsu, L. Gruner-Nielsen, K. Dreyer and J. E. Johnson, "320-Gb/s single-channel pseudolinear transmission over 200 km of nonzero-dispersion fiber", IEEE Photon. Technol. Lett., vol. 12, no. 10, p. 1400, Oct. 2000.
  8. C. Xu, X. Liu, L. Mollenauer and X. Wei, "Comparison of return-to-zero differential phase-shift keying and ON-OFF keying long haul dispersion managed transmission", IEEE Photon. Technol. Lett., vol. 15, no. 4, p. 617, Apr. 2003.
  9. S. Wabnitz and G. L. Meur, "Nonlinear and noise limitations in dispersion-managed soliton wavelength-division multiplexing transmission with distributed Raman amplification", Opt. Lett., vol. 26, no. 11, p. 777, Jun. 2001.
  10. E. Desurvirre, Erbium Doped Fiber Amplifiers, Principles and Applications, San Diego, CA: Academic, 1995.
  11. C. Lester, K. Rottwitt, J. H. Povlsen, P. Varming, M. Newhouse and A. J. Antos, "91 km attenuation-free transmission with low noise accumulation by use of distributed erbium-doped fiber", Opt. Lett., vol. 20, no. 11, pp. 1250-1252, Jun. 1995.
  12. J. Bromage, "Raman amplification for fiber communications systems", J. Lightw. Technol., vol. 22, no. 1, pp. 79-93, Jan. 2004.
  13. H. Kidorf, K. Rottwitt, M. Nissov, M. Ma and E. Rabarijaona, "Pump interactions in a 100-nm bandwidth Raman amplifier", IEEE Photon. Technol. Lett., vol. 11, no. 5, pp. 530-532, May 1999.
  14. K. M. Hillingsoe, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Molmer, S. Keiding, R. Kristiansen, K. P. Hansen and J. J. Larsen, "Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths", Opt. Express, vol. 12, no. 6, pp. 1045-1054, Mar. 2004.
  15. S. N. Knudsen, B. Zhu, L. E. Nelson, M. O. Pedersen, D. W. Peckham and S. Stulz, "420 Gb/s (42 × 10 Gb/s) WDM transmission over 4000 km of ultrawave fiber with 100 km dispersion-managed spans and distributed Raman amplification", Electron. Lett., vol. 37, no. 15, p. 965, Jul. 2001.
  16. R. Hellwarth, "Third-order optical susceptibilities of liquids and solids", Prog. Quantum Electron., vol. 5, pp. 2-68, 1977.
  17. R. Hellwarth, J. Cherlow and T. Yang, "Origin and frequency dependence of nonlinear optical susceptibilities of glasses", Phys. Rev. B, vol. 11, no. 2, pp. 964-967, Jan. 1975.
  18. D. J. Dougherty, F. X. Kartner, H. A. Haus and E. P. Ippen, "Measurement of the Raman gain spectrum of optical fibers", Opt. Lett., vol. 20, no. 1, p. 31, Jan. 1995.
  19. S. Seikai, T. Nakashima and N. Shibat, "Theory of signal light amplification by stimulated Raman scattering in twisted single-mode optical fibers", J. Lightw. Technol., vol. LT-4, no. 6, pp. 583-589, Jun. 1986.
  20. P. B. Hansen, V. L. da Silva, G. Nykolak, J. R. Simpson, D. L. Wilson, J. E. J. Alphonsus and D. J. DiGiovanni, "374-km transmission in a 2.5-Gb/s repeaterless system employing a remotely pumped erbium-doped fiber amplifier", IEEE Photon. Technol. Lett., vol. 7, no. 5, pp. 588-590, May 1995.
  21. E. Desurvire, M. J. F. Digonnet and H. J. Shaw, "Theory and implementation of a Raman active fiber delay line", J. Lightw. Technol., vol. LT4, no. 4, pp. 426-443, Apr. 1986.
  22. K. Rottwitt, J. Bromage, A. J. Stentz, L. Leng, M. E. Lines and H. Smith, "Scaling of the Raman gain coefficient: Applications to germanosilicate fibers", J. Lightw. Technol., vol. 21, no. 7, p. 1652, Jul. 2003.
  23. K. Rottwitt and A. J. Stentz, "Raman amplification in lightwave communication systems," in Proc. Optical Fiber Telecommunications (OFC), San Diego, CA: Academic, 2002,vol. IVA,ch. 5.
  24. J. Bromage, K. Rottwitt and M. E. Lines, "A method to predict the Raman gain spectra of germanosilicate fibers with arbitrary index profiles", IEEE Photon. Technol. Lett., vol. 14, no. 1, pp. 24-26, Jan. 2002.
  25. M. N. Islam, Raman Amplifiers for Telecommunications, 1 & 2, New York: Springer-Verlag, Nov. 2003.
  26. F. L. Galeener, J. C. Mikkelsen Jr., R. H. Geils and W. J. Mosby, "The relative Raman cross sections of vitreous SiO2, GeO2, B2O3 and P2O5", Appl. Phys. Lett., vol. 32, no. 1, pp. 34-36, Jan. 1978.
  27. M. E. Lines, "Raman-gain estimates for high-gain optical fibers", J. Appl. Phys., vol. 62, no. 11, pp. 4363-4370, Dec. 1987.
  28. Q. Lin and G. P. Agrawal, "Statistics of polarization-dependent gain in fiber-based Raman amplifiers", Opt. Lett., vol. 28, no. 4, pp. 227-229, Feb. 2003.
  29. M. E. Fermann, "Single-mode excitation of multimode fibers with ultrashort pulses", Opt. Lett., vol. 23, no. 1, pp. 52-54, Jan. 1998.
  30. M. J. Adams, An Introduction to Optical Waveguides, New York: Wiley, 1981.
  31. R. Stolen, J. P. Gordon, W. J. Tomlinson and H. A. Haus, "Raman response function of silica-core fibers", J. Opt. Soc. Amer. B, vol. 6, no. 6, p. 1159, Jun. 1989.
  32. G. P. Agrawal, Nonlinear Fiber Optics, San Diego, CA: Academic, 1995.
  33. S. Kumar, A. Selvarajan and G. V. Anand, "Influence of Raman scattering on the cross phase modulation in optical fibers", Opt. Commun., vol. 102, no. 3-4, pp. 329-335, Oct. 1993.
  34. K. J. Blow and D. Wood, "Theoretical description of transient stimulated Raman scattering in optical fibers", IEEE J. Quantum Electron., vol. 25, no. 12, pp. 2665-2673, Dec. 1989.
  35. D. Hollenbeck and C. D. Cantrell, "Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function", J. Opt. Soc. Amer. B, vol. 19, no. 12, pp. 2886-2892, Dec. 2002.
  36. G. E. Walrafen and P. N. Krishnan, "Model analysis of the Raman spectrum from fused silica optical fibers", Appl. Opt., vol. 21, no. 3, pp. 350-359, Feb. 1982.
  37. T. Kato, Y. Suetsugu and M. Nishimura, "Estimation of nonlinear refractive index in various silica-based glasses for optical fibers", Opt. Lett., vol. 20, no. 22, pp. 2279-2281, Nov. 1995.
  38. K. S. Kim, R. H. Stolen, W. A. Reed and K. W. Quoi, "Measurement of the nonlinear index of silica-core and dispersion-shifted fibers", Opt. Lett., vol. 19, no. 4, pp. 25-259, Feb. 1994.
  39. A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen and O. A. Levring, "Direct continuous-wave measurement of n2 in various types of telecommunication fiber at 1.55 µm", Opt. Lett., vol. 21, no. 24, pp. 1966-1968, Dec. 1996.

Other (39)

R. H. Stolen and E. P. Ippen, "Raman gain in glass optical waveguides", Appl. Phys. Lett., vol. 22, no. 6, pp. 276-281, 1973.

L. F. Mollenauer, R. H. Stolen and M. N. Islam, "Experimental demonstration of soliton propagation in long fibers: Loss compensated by Raman gain", Opt. Lett., vol. 10, no. 5, p. 229, May 1985.

P. B. Hansen, L. Eskildsen, S. G. Grubb, S. K. Korotky, T. A. Strasser, J. E. J. Alphonsus, J. J. Veselka, D. J. DiGiovanni, D. W. Peckham and D. Truxal, "442 km repeaterless transmission in a 10 Gbit/s system experiment", Electron. Lett., vol. 32, no. 11, pp. 1018-1019, May 1996.

T. N. Nielsen, A. J. Stentz, K. Rottwitt, D. S. Vengsarkar, Z. J. Chen, P. B. Hansen, J. H. Park, K. S. Feder, S. Cabot, S. Stulz, D. W. Peckham, L. Hsu, C. K. Kan, A. F. Judy, S. Y. Park, L. E. Nelson and L. Gruner-Nielsen, "3.28-Tb/s transmission over 3 × 100 km of nonzero-dispersion fiber using dual C-and L-band distributed Raman amplification", IEEE Photon. Technol. Lett., vol. 12, no. 8, pp. 1079-1081, Aug. 2000.

B. Chu, L. Leng, L. E. Nelson, L. Gruner-Nielsen, Y. Qian, J. Bromage, S. Stultz, S. Kado, Y. Emori, S. Namiki, P. Gaarde, A. Judy, B. Palsdottir and R. L. LingleJr., "3.2 Tb/s (80 × 42.7 Gb/s) transmission over 20 × 100 km of non-zero dispersion fiber with simultaneous C + L band dispersion compensation", in Optical Fiber Communication (OFC), Anaheim, CA, 2002, pp. FC8-1-FC8-3.

M. Nissov, C. R. Davidson, K. Rottwitt, R. Menges, P. C. Corbett, D. Innis and N. S. Bergano, "100 Gb/s (10 × 10 Gb/s) WDM transmission over 7200 km using distributed Raman amplification", in Eur. Conf. Optical Communication (ECOC), Edinburgh, U.K., 1997, pp. 9-12.

B. Mikkelsen, G. Raybon, R.-J. Essiambre, A. J. Stentz, T. N. Nielsen, D. W. Peckham, L. Hsu, L. Gruner-Nielsen, K. Dreyer and J. E. Johnson, "320-Gb/s single-channel pseudolinear transmission over 200 km of nonzero-dispersion fiber", IEEE Photon. Technol. Lett., vol. 12, no. 10, p. 1400, Oct. 2000.

C. Xu, X. Liu, L. Mollenauer and X. Wei, "Comparison of return-to-zero differential phase-shift keying and ON-OFF keying long haul dispersion managed transmission", IEEE Photon. Technol. Lett., vol. 15, no. 4, p. 617, Apr. 2003.

S. Wabnitz and G. L. Meur, "Nonlinear and noise limitations in dispersion-managed soliton wavelength-division multiplexing transmission with distributed Raman amplification", Opt. Lett., vol. 26, no. 11, p. 777, Jun. 2001.

E. Desurvirre, Erbium Doped Fiber Amplifiers, Principles and Applications, San Diego, CA: Academic, 1995.

C. Lester, K. Rottwitt, J. H. Povlsen, P. Varming, M. Newhouse and A. J. Antos, "91 km attenuation-free transmission with low noise accumulation by use of distributed erbium-doped fiber", Opt. Lett., vol. 20, no. 11, pp. 1250-1252, Jun. 1995.

J. Bromage, "Raman amplification for fiber communications systems", J. Lightw. Technol., vol. 22, no. 1, pp. 79-93, Jan. 2004.

H. Kidorf, K. Rottwitt, M. Nissov, M. Ma and E. Rabarijaona, "Pump interactions in a 100-nm bandwidth Raman amplifier", IEEE Photon. Technol. Lett., vol. 11, no. 5, pp. 530-532, May 1999.

K. M. Hillingsoe, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Molmer, S. Keiding, R. Kristiansen, K. P. Hansen and J. J. Larsen, "Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths", Opt. Express, vol. 12, no. 6, pp. 1045-1054, Mar. 2004.

S. N. Knudsen, B. Zhu, L. E. Nelson, M. O. Pedersen, D. W. Peckham and S. Stulz, "420 Gb/s (42 × 10 Gb/s) WDM transmission over 4000 km of ultrawave fiber with 100 km dispersion-managed spans and distributed Raman amplification", Electron. Lett., vol. 37, no. 15, p. 965, Jul. 2001.

R. Hellwarth, "Third-order optical susceptibilities of liquids and solids", Prog. Quantum Electron., vol. 5, pp. 2-68, 1977.

R. Hellwarth, J. Cherlow and T. Yang, "Origin and frequency dependence of nonlinear optical susceptibilities of glasses", Phys. Rev. B, vol. 11, no. 2, pp. 964-967, Jan. 1975.

D. J. Dougherty, F. X. Kartner, H. A. Haus and E. P. Ippen, "Measurement of the Raman gain spectrum of optical fibers", Opt. Lett., vol. 20, no. 1, p. 31, Jan. 1995.

S. Seikai, T. Nakashima and N. Shibat, "Theory of signal light amplification by stimulated Raman scattering in twisted single-mode optical fibers", J. Lightw. Technol., vol. LT-4, no. 6, pp. 583-589, Jun. 1986.

P. B. Hansen, V. L. da Silva, G. Nykolak, J. R. Simpson, D. L. Wilson, J. E. J. Alphonsus and D. J. DiGiovanni, "374-km transmission in a 2.5-Gb/s repeaterless system employing a remotely pumped erbium-doped fiber amplifier", IEEE Photon. Technol. Lett., vol. 7, no. 5, pp. 588-590, May 1995.

E. Desurvire, M. J. F. Digonnet and H. J. Shaw, "Theory and implementation of a Raman active fiber delay line", J. Lightw. Technol., vol. LT4, no. 4, pp. 426-443, Apr. 1986.

K. Rottwitt, J. Bromage, A. J. Stentz, L. Leng, M. E. Lines and H. Smith, "Scaling of the Raman gain coefficient: Applications to germanosilicate fibers", J. Lightw. Technol., vol. 21, no. 7, p. 1652, Jul. 2003.

K. Rottwitt and A. J. Stentz, "Raman amplification in lightwave communication systems," in Proc. Optical Fiber Telecommunications (OFC), San Diego, CA: Academic, 2002,vol. IVA,ch. 5.

J. Bromage, K. Rottwitt and M. E. Lines, "A method to predict the Raman gain spectra of germanosilicate fibers with arbitrary index profiles", IEEE Photon. Technol. Lett., vol. 14, no. 1, pp. 24-26, Jan. 2002.

M. N. Islam, Raman Amplifiers for Telecommunications, 1 & 2, New York: Springer-Verlag, Nov. 2003.

F. L. Galeener, J. C. Mikkelsen Jr., R. H. Geils and W. J. Mosby, "The relative Raman cross sections of vitreous SiO2, GeO2, B2O3 and P2O5", Appl. Phys. Lett., vol. 32, no. 1, pp. 34-36, Jan. 1978.

M. E. Lines, "Raman-gain estimates for high-gain optical fibers", J. Appl. Phys., vol. 62, no. 11, pp. 4363-4370, Dec. 1987.

Q. Lin and G. P. Agrawal, "Statistics of polarization-dependent gain in fiber-based Raman amplifiers", Opt. Lett., vol. 28, no. 4, pp. 227-229, Feb. 2003.

M. E. Fermann, "Single-mode excitation of multimode fibers with ultrashort pulses", Opt. Lett., vol. 23, no. 1, pp. 52-54, Jan. 1998.

M. J. Adams, An Introduction to Optical Waveguides, New York: Wiley, 1981.

R. Stolen, J. P. Gordon, W. J. Tomlinson and H. A. Haus, "Raman response function of silica-core fibers", J. Opt. Soc. Amer. B, vol. 6, no. 6, p. 1159, Jun. 1989.

G. P. Agrawal, Nonlinear Fiber Optics, San Diego, CA: Academic, 1995.

S. Kumar, A. Selvarajan and G. V. Anand, "Influence of Raman scattering on the cross phase modulation in optical fibers", Opt. Commun., vol. 102, no. 3-4, pp. 329-335, Oct. 1993.

K. J. Blow and D. Wood, "Theoretical description of transient stimulated Raman scattering in optical fibers", IEEE J. Quantum Electron., vol. 25, no. 12, pp. 2665-2673, Dec. 1989.

D. Hollenbeck and C. D. Cantrell, "Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function", J. Opt. Soc. Amer. B, vol. 19, no. 12, pp. 2886-2892, Dec. 2002.

G. E. Walrafen and P. N. Krishnan, "Model analysis of the Raman spectrum from fused silica optical fibers", Appl. Opt., vol. 21, no. 3, pp. 350-359, Feb. 1982.

T. Kato, Y. Suetsugu and M. Nishimura, "Estimation of nonlinear refractive index in various silica-based glasses for optical fibers", Opt. Lett., vol. 20, no. 22, pp. 2279-2281, Nov. 1995.

K. S. Kim, R. H. Stolen, W. A. Reed and K. W. Quoi, "Measurement of the nonlinear index of silica-core and dispersion-shifted fibers", Opt. Lett., vol. 19, no. 4, pp. 25-259, Feb. 1994.

A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen and O. A. Levring, "Direct continuous-wave measurement of n2 in various types of telecommunication fiber at 1.55 µm", Opt. Lett., vol. 21, no. 24, pp. 1966-1968, Dec. 1996.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.