Abstract

This paper presents a complete model for the design and optimization of multiwavelength distributed Fabry-Pérot (DFP) fiber lasers that are made by superimposing two chirped fiber Bragg gratings in a photosensitive codoped erbium-ytterbium (Er-Yb) fiber. The model is based on a matrix formulation of coupled-mode equations taking into account the chirped grating superstructure and including a spectrally resolved gain medium. The performed analysis reveals that the signal power of each channel is strongly localized near a minimum of the superstructured-grating envelope. As a consequence, the overlap between the power distributions in neighboring cavities is small, thus reducing the effect of cross-gain saturation and allowing a high number of channels in a short piece of fiber. The simulations also show how the saturation of the cross-relaxation mechanism between ytterbium and erbium leads to flat output spectra without the need for an additional equalization scheme such as a complex grating apodization profile. Furthermore, to validate the theoretical model,we present the experimental realization and characterization of a multiwavelength laser emitting in a single-mode and single-polarization over 16 wavelengths spaced by 50 GHz and with a total output power of 52 mW.

© 2005 IEEE

PDF Article

References

  • View by:
  • |

  1. Y. Suzaki, H. Yakasa, H. Mawatari, K. Yoshono, Y. Kawaguchi, S. Oku, R. Iga and H. Okamoto, "Beyond 80-Gbit/s-throughput monolithically integrated eight-channel WDM modulator module for multi-channel optical transmitter", in Optical Fiber Communication Conf. CD-ROM, Washington, DC, 2004, Paper TuE1.
  2. G. A. Cranch, C. K. Kirkendall, K. Daley, S. Motley, A. Bautista, J. Salzano, P. J. Nash, J. Latchem and R. Crickmore, "Large-scale remotely pumped and interrogated fiber-optic interferometric sensor array", IEEE Photon. Technol. Lett., vol. 15, pp. 1579-1581, 2003.
  3. L. Bach, I. P. Reithmaier, A. Forchel, J. L. Gentner and L. Goldstein, "Multiwavelength laterally complex coupled distributed feedback laser arrays with monolithically integrated combiner fabricated by focused-ion-beam lithography", Appl. Phys. Lett., vol. 79, pp. 2324-2326, 2001.
  4. M. Zirngibl, C. H. Joyner, C. R. Doerr, L. W. Stulz and H. M. Presby, "An 18-channel multifrequency laser", IEEE Photon. Technol. Lett., vol. 8, pp. 870 -872, 1996.
  5. J. Liu, J. Yao, J. Yao and T. Yeap, "Single longitudinal mode multiwavelength fiber ring lasers", in Optical Fiber Communication Conf. CD-ROM, Washington, DC, 2004,Paper ThB2.
  6. S. Yamashita, K. Hsu and W. H. Loh, "Miniature erbium:ytterbium fiber Fabry-Perot multiwavelength lasers", IEEE J. Select. Topics Quantum Electron., vol. 3, pp. 1058-1064, 1997.
  7. J. Hubner, P. Varming and M. Kristensen, "Five wavelength DFB fiber laser source for WDM systems", Electron. Lett., vol. 33, pp. 139-140, 1997.
  8. M. Ibsen, S. U. Alam, M. N. Zervas, A. B. Grudinin and D. N. Payne, "8-and 16-channels all-fiber DFB laser WDM transmitters with integrated pump redundancy", IEEE Photon. Technol. Lett., vol. 11, pp. 1114-1116, 1999.
  9. M. Ibsen, E. Ronnekleiv, G. J. Cowle, M. N. Zervas and R. I. Laming, "Multiple wavelength all-fiber DFB lasers", Electron. Lett., vol. 36, pp. 143-144, 2000.
  10. R. Slav�k, I. Castonguay, S. LaRochelle and S. Doucet, "Short multiwavelength fiber laser made of a large-band distributed Fabry-P�rot structure", IEEE Photon. Technol. Lett., vol. 16, pp. 1017 -1019, 2004.
  11. G. Brochu, R. Slav�k and S. LaRochelle, "Ultra-compact 52 mW 50-GHz spaced 16 channels narrow-line and single-polarization fiber laser", in Optical Fiber Communication Conf., Washington, DC, 2004,Postdeadline paper PDP22.
  12. G. Brochu, R. Slav�k and S. LaRochelle, "Analysis and optimization of a multiwavelength distributed Fabry-Perot fiber laser", in CLEO/IQEC and PhAST Tech. Dig. CDROM, Washington, DC, 2004,Paper ThGG5.
  13. T. Erdogan, "Fiber Grating Spectra", J. Lightw. Technol. , vol. 15, pp. 1277-1294, 1997.
  14. V. C. Lauridsen, J. H. Povlsen and P. Varming, "Design of DFB fiber lasers", Electron. Lett., vol. 34, pp. 2028-2030, 1998.
  15. S. W. Lovseth and E. Ronnekleiv, "Fundamental and higher order mode thresholds of DFB fiber lasers", J. Lightw. Technol., vol. 20, pp. 494-501, 2002.
  16. J. Po�tte, S. Blin, G. Brochu, L. Bramerie, R. Slav�k, J.-C. Simon, S. LaRochelle and P. Besnard, "Relative intensity noise of a multiwavelength fiber laser", Electron. Lett. , vol. 40, pp. 724-726, Jun. 2004.
  17. S. W. Lovseth and D. Y. Stepanov, "Analysis of multiple wavelength DFB fiber lasers", IEEE J. Quantum Electron., vol. 37, pp. 770-780, 2001.
  18. E. Ronnekleiv, M. N. Zervas and J. T. Kringlebotn, "Modeling of polarization-mode competition in fiber DFB lasers", IEEE J. Quantum Electron., vol. 34, pp. 1559-1569, 1998.
  19. F. Di Pasquale, "Modeling of highly-efficient grating-feedback and Fabry-Perot Er-Yb Co-Doped fiber lasers", IEEE J. Quantum Electron., vol. 32, pp. 326-332, 1996.
  20. E. Yahel and A. A. Hardy, "Modeling and optimization of short Er3+- Yb3+ codoped fiber lasers", IEEE J. Quantum Electron., vol. 39, pp. 1444-1451, 2003.
  21. R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper and D. C. Hanna, "Lifetime quenching in Yb-doped fibers", Opt. Commun., vol. 136, pp. 375-378, 1997.
  22. Z. Burshtein, Y. Kalisky, S. Z. Levy, P. Le Boulanger and S. Rotman, "Impurity local phonon nonradiative quenching of Yb3+ fluorescence in ytterbium-doped silicate glasses", IEEE J. Quantum Electron., vol. 36, pp. 1000-1007, 2000.
  23. K. Yelen, M. N. Zervas and L. M. B. Hickey, "Fiber DFB lasers with ultimate efficiency", in Optical Fiber Communication Conf., Washington, DC, 2004,Postdeadline paper PDP21.
  24. R. Slav�k, S. Doucet and S. LaRochelle, "High-performance all-fiber Fabry-Perot filters with superimposed chirped Bragg gratings", J. Lightw. Technol., vol. 21, pp. 1059-1065, 2003.
  25. Y. Z. Xu, H. Y. Tam, S. Y. Liu and M. S. Demokan, "Pump-induced thermal effects in Er-Yb fiber grating DBR lasers", IEEE Photon. Technol. Lett., vol. 10, pp. 1253-1255, 1998.

Other (25)

Y. Suzaki, H. Yakasa, H. Mawatari, K. Yoshono, Y. Kawaguchi, S. Oku, R. Iga and H. Okamoto, "Beyond 80-Gbit/s-throughput monolithically integrated eight-channel WDM modulator module for multi-channel optical transmitter", in Optical Fiber Communication Conf. CD-ROM, Washington, DC, 2004, Paper TuE1.

G. A. Cranch, C. K. Kirkendall, K. Daley, S. Motley, A. Bautista, J. Salzano, P. J. Nash, J. Latchem and R. Crickmore, "Large-scale remotely pumped and interrogated fiber-optic interferometric sensor array", IEEE Photon. Technol. Lett., vol. 15, pp. 1579-1581, 2003.

L. Bach, I. P. Reithmaier, A. Forchel, J. L. Gentner and L. Goldstein, "Multiwavelength laterally complex coupled distributed feedback laser arrays with monolithically integrated combiner fabricated by focused-ion-beam lithography", Appl. Phys. Lett., vol. 79, pp. 2324-2326, 2001.

M. Zirngibl, C. H. Joyner, C. R. Doerr, L. W. Stulz and H. M. Presby, "An 18-channel multifrequency laser", IEEE Photon. Technol. Lett., vol. 8, pp. 870 -872, 1996.

J. Liu, J. Yao, J. Yao and T. Yeap, "Single longitudinal mode multiwavelength fiber ring lasers", in Optical Fiber Communication Conf. CD-ROM, Washington, DC, 2004,Paper ThB2.

S. Yamashita, K. Hsu and W. H. Loh, "Miniature erbium:ytterbium fiber Fabry-Perot multiwavelength lasers", IEEE J. Select. Topics Quantum Electron., vol. 3, pp. 1058-1064, 1997.

J. Hubner, P. Varming and M. Kristensen, "Five wavelength DFB fiber laser source for WDM systems", Electron. Lett., vol. 33, pp. 139-140, 1997.

M. Ibsen, S. U. Alam, M. N. Zervas, A. B. Grudinin and D. N. Payne, "8-and 16-channels all-fiber DFB laser WDM transmitters with integrated pump redundancy", IEEE Photon. Technol. Lett., vol. 11, pp. 1114-1116, 1999.

M. Ibsen, E. Ronnekleiv, G. J. Cowle, M. N. Zervas and R. I. Laming, "Multiple wavelength all-fiber DFB lasers", Electron. Lett., vol. 36, pp. 143-144, 2000.

R. Slav�k, I. Castonguay, S. LaRochelle and S. Doucet, "Short multiwavelength fiber laser made of a large-band distributed Fabry-P�rot structure", IEEE Photon. Technol. Lett., vol. 16, pp. 1017 -1019, 2004.

G. Brochu, R. Slav�k and S. LaRochelle, "Ultra-compact 52 mW 50-GHz spaced 16 channels narrow-line and single-polarization fiber laser", in Optical Fiber Communication Conf., Washington, DC, 2004,Postdeadline paper PDP22.

G. Brochu, R. Slav�k and S. LaRochelle, "Analysis and optimization of a multiwavelength distributed Fabry-Perot fiber laser", in CLEO/IQEC and PhAST Tech. Dig. CDROM, Washington, DC, 2004,Paper ThGG5.

T. Erdogan, "Fiber Grating Spectra", J. Lightw. Technol. , vol. 15, pp. 1277-1294, 1997.

V. C. Lauridsen, J. H. Povlsen and P. Varming, "Design of DFB fiber lasers", Electron. Lett., vol. 34, pp. 2028-2030, 1998.

S. W. Lovseth and E. Ronnekleiv, "Fundamental and higher order mode thresholds of DFB fiber lasers", J. Lightw. Technol., vol. 20, pp. 494-501, 2002.

J. Po�tte, S. Blin, G. Brochu, L. Bramerie, R. Slav�k, J.-C. Simon, S. LaRochelle and P. Besnard, "Relative intensity noise of a multiwavelength fiber laser", Electron. Lett. , vol. 40, pp. 724-726, Jun. 2004.

S. W. Lovseth and D. Y. Stepanov, "Analysis of multiple wavelength DFB fiber lasers", IEEE J. Quantum Electron., vol. 37, pp. 770-780, 2001.

E. Ronnekleiv, M. N. Zervas and J. T. Kringlebotn, "Modeling of polarization-mode competition in fiber DFB lasers", IEEE J. Quantum Electron., vol. 34, pp. 1559-1569, 1998.

F. Di Pasquale, "Modeling of highly-efficient grating-feedback and Fabry-Perot Er-Yb Co-Doped fiber lasers", IEEE J. Quantum Electron., vol. 32, pp. 326-332, 1996.

E. Yahel and A. A. Hardy, "Modeling and optimization of short Er3+- Yb3+ codoped fiber lasers", IEEE J. Quantum Electron., vol. 39, pp. 1444-1451, 2003.

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper and D. C. Hanna, "Lifetime quenching in Yb-doped fibers", Opt. Commun., vol. 136, pp. 375-378, 1997.

Z. Burshtein, Y. Kalisky, S. Z. Levy, P. Le Boulanger and S. Rotman, "Impurity local phonon nonradiative quenching of Yb3+ fluorescence in ytterbium-doped silicate glasses", IEEE J. Quantum Electron., vol. 36, pp. 1000-1007, 2000.

K. Yelen, M. N. Zervas and L. M. B. Hickey, "Fiber DFB lasers with ultimate efficiency", in Optical Fiber Communication Conf., Washington, DC, 2004,Postdeadline paper PDP21.

R. Slav�k, S. Doucet and S. LaRochelle, "High-performance all-fiber Fabry-Perot filters with superimposed chirped Bragg gratings", J. Lightw. Technol., vol. 21, pp. 1059-1065, 2003.

Y. Z. Xu, H. Y. Tam, S. Y. Liu and M. S. Demokan, "Pump-induced thermal effects in Er-Yb fiber grating DBR lasers", IEEE Photon. Technol. Lett., vol. 10, pp. 1253-1255, 1998.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.