Abstract

A finite-element method (FEM) is newly formulated for the modal analysis of nonlinear periodic optical waveguides. In order to treat periodicity in the propagation direction, periodic boundary conditions are imposed on the envelope of electromagnetic fields. The validity of this method is verified by way of numerical examples of a PC waveguide composed of nonlinear dielectric pillars placed on square array in the cladding region. Furthermore, the present method is applied to various nonlinear photonic crystal waveguide structures for exploring appropriate structures to enhance the nonlinearity and their nonlinear modal properties are presented, including coupled-resonator optical waveguides.

© 2005 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription