Abstract

An erbium-doped hole-assisted optical fiber amplifier, to be employed in the third band of the optical communications, is designed and optimized via a tailor made computer code. The finite element method is used for the electromagnetic investigation of the microstructured fiber section. The simulation model takes into account all the rare earth physical phenomena, i.e., the pump and signal propagation, the amplified spontaneous emission,the secondary transitions pertaining to the ion-ion interactions, and so on. The device feasibility is tested via a number of simulations, realistically performed by taking into account the actual parameters pertaining to the dispersion of the germania/silica glass, the erbium emission and absorption cross sections,the propagation losses. By simulation, in the small signal operation, a gain close to 42.8 dB is demonstrated for a fiber 13-m long, using a pump power of 50 mW at the signal wavelength lambdas =1536 nm, the pump and the signal being copropagating.

© 2005 IEEE

PDF Article

References

  • View by:
  • |

  1. J. C. Knight, "Photonic crystal fibers", Nature, vol. 424, pp. 847-851, 2003.
  2. P. S. J. Russell, "Photonic crystal fibers", Science, vol. 299, pp. 358-362, 2003.
  3. J. C. Knight, T. A. Birks, P. S. J. Russel and D. M. Aktin, "All silica single mode optical fiber with photonic crystal cladding", Opt. Lett., vol. 21, pp. 1547-1549, 1996.
  4. T. A. Birks, J. C. Knight and P. S. J. Russel, "Endlessly single-mode photonic crystal fiber", Opt. Lett., vol. 22, pp. 961-963, 1997.
  5. W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch, J. Arriaga, E. Silvestre and P. S. J. Russell, "Soliton effects in photonic crystal fibers at 850 nm", Electron. Lett., vol. 36, pp. 53-55, 2000.
  6. K. Furusawa, A. N. Malinowski, J. H. V. Price, T. M. Monro, J. K. Sahu, J. Nilsson and D. J. Richardson, "A cladding pumped Ytterbium-doped fiber laser with holey inner and outer cladding", Opt. Express, vol. 9, pp. 714-720, 2001.
  7. T. M. Monro, D. J. Richardson, N. G. R. Broderick and P. J. Bennet, "Holey optical fibers: An efficient modal model", J. Lightw. Technol., vol. 17, pp. 1093-1102, 1999.
  8. K. Tajima, J. Zhou, K. Kurokawa and K. Nakajima, "Low water peak photonic crystal fibers", in Proc. 29th European Conference on Optical Communication ECOC'03, Rimini, Italy, 2003, pp. 42-43.
  9. T. A. Birks, P. J. Roberts, P. S. J. Russell, D. M. Atkin and T. J. Shepherd, "Full 2-D photonic band gap in silica/air structures", Electron. Lett., vol. 31, pp. 1941-1943, 1995.
  10. J. C. Knight, J. Broeng, T. A. Birks and P. S. J. Russel, "Photonic band gap guidance in optical fiber", Science, vol. 282, pp. 1476-1478, 1998.
  11. A. Ferrando, E. Silvestre, J. J. Miret, P. Andr�s and M. V. Andr�s, "Vector description of higher-order modes in photonic crystal fibers", J. Opt. Soc. Amer. A, vol. 17, pp. 1-8, 2000.
  12. T. Hasegawa, E. Sasaoka, M. Onishi, M. Nishimura, Y. Tsuji and M. Koshiba, "Hole-assisted lightguide fiber for large anomalous dispersion and low optical loss", Opt. Express, vol. 9, pp. 681-686, 2001.
  13. Z. Zhu and T. G. Brown, "Multipole analysis of hole-assisted optical fibers", Opt. Commun., vol. 206, pp. 333-339, 2002.
  14. A. D'Orazio, M. De Sario, L. Mescia, V. Petruzzelli, F. Prudenzano, A. Chiasera, M. Montagna, C. Tosello and M. Ferrari, "Design of Er3+ doped SiO2 - TiO2 planar waveguide amplifier", J. Non-Crystal. Solids, vol. 322, pp. 278-283, 2003.
  15. W. L. Barnes, R. I. Laming, E. J. Tarbox and P. R. Morkel, "Absorption and emission cross section of Er3+ doped silica fiber", IEEE J. Quantum Electron., vol. 27, pp. 1004-1010, 1991.
  16. F. Di Pasquale, M. Zoboli, M. Federighi and I. Massarek, "Finite element modeling of silica waveguide amplifiers with high erbium concentration", IEEE J. Quantum Electron. , vol. 30, pp. 1277-1281, 1994.
  17. F. Di Pasquale and M. Federighi, "Modeling of uniform and pair induced upconversion mechanisms in higth concentration erbium doped silica waveguide", J. Lightw. Technol., vol. 13, pp. 1858-1864, 1995.
  18. C. E. Chryssou and F. Di Pasquale, " Er3+ doped channel optical waveguide amplifiers for WDM system: A comparison of tellurite, alumina and Al/P silicate materials", IEEE J. Sel. Topics Quantum Electron. , vol. 6, pp. 114-121, 2000.
  19. A. Bjarklev, Optical Fiber Amplifiers: Design and System Applications , Norwood, MA: Artech House, 1993, pp. 77-101.
  20. J. W. Fleming, "Dispersion in GeO2 - SiO2 glasses", Appl. Opt., vol. 23, pp. 4486-4493, 1984.
  21. Z. Zhu and T. G. Brown, "Analysis of the space filling modes of photonic crystal fibers", Opt. Express, vol. 8, pp. 547 -554, 2001.
  22. M. J. Steel, T. P. White, C. M. de Sterke, R. C. McPhedran and L. C. Botten, "Symmetry and degeneracy in microstructured optical fiber", Opt. Lett., vol. 26, pp. 488-490, 2001.
  23. M. Y. P. Shum and C. Lu, "Hole assisted multiring fiber with low dispersion around 1550 nm", IEEE Photon. Technol. Lett., vol. 16, no. 1, pp. 123-125, 2004.
  24. P. Blixt, J. Nilsson, T. Carlnas and B. Jaskorzynska, "Concentration depedent upconversion in Er3+-Doped fiber amplifiers: Experiments and modeling", IEEE Photon. Techonol. Lett., vol. 3, pp. 996-998, 1991.
  25. C. Y. Chen, R. R. Petrin, D. C. Yeh and W. A. Sibley, "Concentration depedent energy transfer processes in Er3+ and Tm3+ doped heavy metal fluoride glasses", Opt. Lett., vol. 14, pp. 432-434, 1999.
  26. P. Myslinsky, D. Nguyen and J. Chrostowski, "Effects of concentration on the performance of erbium-doped fiber amplifiers", J. Lightw. Technol., vol. 15, pp. 112-120, 1997.
  27. A. Cucinotta, F. Poli, S. Selleri, L. Vincetti and M. Zoboli, "Amplification properties of Er3+ -doped photonic crystal fibers", J. Lightw. Technol., vol. 21, pp. 782-788, 2003.
  28. E. Desurvire, Erbium Doped Fiber Amplifiers, New York: Wiley-Interscience Inc., 1993, pp. 354 -373.

Appl. Opt.

Opt. Express

Opt. Lett.

Other

J. C. Knight, "Photonic crystal fibers", Nature, vol. 424, pp. 847-851, 2003.

P. S. J. Russell, "Photonic crystal fibers", Science, vol. 299, pp. 358-362, 2003.

W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch, J. Arriaga, E. Silvestre and P. S. J. Russell, "Soliton effects in photonic crystal fibers at 850 nm", Electron. Lett., vol. 36, pp. 53-55, 2000.

T. M. Monro, D. J. Richardson, N. G. R. Broderick and P. J. Bennet, "Holey optical fibers: An efficient modal model", J. Lightw. Technol., vol. 17, pp. 1093-1102, 1999.

K. Tajima, J. Zhou, K. Kurokawa and K. Nakajima, "Low water peak photonic crystal fibers", in Proc. 29th European Conference on Optical Communication ECOC'03, Rimini, Italy, 2003, pp. 42-43.

T. A. Birks, P. J. Roberts, P. S. J. Russell, D. M. Atkin and T. J. Shepherd, "Full 2-D photonic band gap in silica/air structures", Electron. Lett., vol. 31, pp. 1941-1943, 1995.

J. C. Knight, J. Broeng, T. A. Birks and P. S. J. Russel, "Photonic band gap guidance in optical fiber", Science, vol. 282, pp. 1476-1478, 1998.

A. Ferrando, E. Silvestre, J. J. Miret, P. Andr�s and M. V. Andr�s, "Vector description of higher-order modes in photonic crystal fibers", J. Opt. Soc. Amer. A, vol. 17, pp. 1-8, 2000.

Z. Zhu and T. G. Brown, "Multipole analysis of hole-assisted optical fibers", Opt. Commun., vol. 206, pp. 333-339, 2002.

A. D'Orazio, M. De Sario, L. Mescia, V. Petruzzelli, F. Prudenzano, A. Chiasera, M. Montagna, C. Tosello and M. Ferrari, "Design of Er3+ doped SiO2 - TiO2 planar waveguide amplifier", J. Non-Crystal. Solids, vol. 322, pp. 278-283, 2003.

W. L. Barnes, R. I. Laming, E. J. Tarbox and P. R. Morkel, "Absorption and emission cross section of Er3+ doped silica fiber", IEEE J. Quantum Electron., vol. 27, pp. 1004-1010, 1991.

F. Di Pasquale, M. Zoboli, M. Federighi and I. Massarek, "Finite element modeling of silica waveguide amplifiers with high erbium concentration", IEEE J. Quantum Electron. , vol. 30, pp. 1277-1281, 1994.

F. Di Pasquale and M. Federighi, "Modeling of uniform and pair induced upconversion mechanisms in higth concentration erbium doped silica waveguide", J. Lightw. Technol., vol. 13, pp. 1858-1864, 1995.

C. E. Chryssou and F. Di Pasquale, " Er3+ doped channel optical waveguide amplifiers for WDM system: A comparison of tellurite, alumina and Al/P silicate materials", IEEE J. Sel. Topics Quantum Electron. , vol. 6, pp. 114-121, 2000.

A. Bjarklev, Optical Fiber Amplifiers: Design and System Applications , Norwood, MA: Artech House, 1993, pp. 77-101.

M. Y. P. Shum and C. Lu, "Hole assisted multiring fiber with low dispersion around 1550 nm", IEEE Photon. Technol. Lett., vol. 16, no. 1, pp. 123-125, 2004.

P. Blixt, J. Nilsson, T. Carlnas and B. Jaskorzynska, "Concentration depedent upconversion in Er3+-Doped fiber amplifiers: Experiments and modeling", IEEE Photon. Techonol. Lett., vol. 3, pp. 996-998, 1991.

P. Myslinsky, D. Nguyen and J. Chrostowski, "Effects of concentration on the performance of erbium-doped fiber amplifiers", J. Lightw. Technol., vol. 15, pp. 112-120, 1997.

A. Cucinotta, F. Poli, S. Selleri, L. Vincetti and M. Zoboli, "Amplification properties of Er3+ -doped photonic crystal fibers", J. Lightw. Technol., vol. 21, pp. 782-788, 2003.

E. Desurvire, Erbium Doped Fiber Amplifiers, New York: Wiley-Interscience Inc., 1993, pp. 354 -373.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.