Abstract

This paper presents a scheme by which multiple wavelength-division-multiplexed millimeter-wave (mm-wave) signals in the range of 30 GHz can be generated from a single monolithic semiconductor laser for applications in optically fed mm-wave networks or fiber radio networks. The mm-wave signals are generated using dual optical modes separated by a mm-wave frequency, obtained from spectrum slicing the output from a stable multimode hybrid mode-locked semiconductor laser. In this scheme, self-heterodyne detection at a high-speed photodetector achieves the photonic upconversion of low-data-rate signals to mm-wave frequencies without the need for electronic mixing. Experimental results show the generation of up to 14 WDM channels using a single laser. The phase noise of electrical signals generated by photonic upconversion of these signals is less than -94 dBc/Hz at 100-kHz offset frequency across the wavelengths. Also presented is the transmission of 155-Mb/s binary-phase-shift-keyed data signals at 30-GHz frequency over 10 km of single-mode fiber at different wavelengths using dual-mode signals. The results confirm that a bit-error rate of 10-^9 can be easily achieved. The dispersion tolerance of the dual-mode signals is evaluated using simulation and an analytical model and compared with other mm-wave signal generation techniques.

© 2005 IEEE

PDF Article

References

  • View by:
  • |

  1. H. Al-Raweshidy and S. Komaki, Radio Over Fiber Technologies for Mobile Communications Networks, Norwood, MA: Artech House, 2002.
  2. H. Kawamura, N. Imai, E. Ogawa and H. Inomata, "High-speed data transmission using millimeter-wave fiber-optic links", IEICE Trans. Communications, pp. 1784-1791, 1996.
  3. C. Lim, A. Nirmalathas, M. Attygalle, D. Novak and R. Waterhouse, "On the merging of millimeter-wave fiber radio backbone with 25 GHz WDM ring network", J. Lightw. Technol. , vol. 21, no. 10, pp. 2203-2210, Oct. 2003.
  4. J. Park and K. Y. Lau, "Millimeter-wave (39 GHz) fiber-wireless transmission of broadband multichannel compressed digital video", Electron. Lett., vol. 32, pp. 474-475, 1996.
  5. C. Lim, A. Nirmalathas, D. Novak, R. Waterhouse and G. Yoffe, "Millimeter-wave broad-band fiber-wireless system incorporating baseband data transmission over fiber and remote LO delivery", J. Lightw. Technol., vol. 18, no. 10, pp. 1355-1363, Oct. 2000.
  6. D. Novak, Z. Ahmed, R. B. Waterhouse and R. S. Tucker, "Signal generation using pulsed semiconductor lasers for application in millimeter-wave wireless links", IEEE Trans. Microwave Theory Tech., vol. 43, no. 9, pp. 2257-2262, Sep. 1995.
  7. A. J. C. Vieira, P. R. Herczfeld, A. Rosen, M. Ermold, E. E. Funk, W. D. Jemison and K. J. Williams, "A mode-locked microchip laser optical transmitter for fiber radio", IEEE Trans. Microwave Theory Tech., vol. 49, no. 10, pp. 1882-1887, Oct. 2001.
  8. C. H. von Helmolt, U. Kruger, K. Kruger and G. Grosskopf, "A mobile broad-band communication system based on mode-locked lasers", IEEE Trans. Microwave Theory Tech., vol. 45, no. 8, pp. 1424-1430, Aug. 1997.
  9. G. J. Simonis and K. G. Purchase, "Optical generation, distribution and control of microwaves using laser heterodyne", IEEE Trans. Microwave Theory Tech., vol. 38, no. 5, pp. 667-669, May 1990.
  10. D. Wake, C. R. Lima and P. A. Davies, "Optical generation of millimeter-wave signals for fiber-radio systems using a dual-mode DFB semiconductor laser", IEEE Trans. Microwave Theory Tech., vol. 43, no. 9, pp. 2270 -2276, Sep. 1995.
  11. M. Ogusu, K. Inagaki, Y. Mizuguchi and T. Ohira, "Carrier generation and data transmission on millimeter-wave bands using two-mode locked Fabry-P�rot lasers", IEEE Trans. Microwave Theory Tech., vol. 51, no. 2, pp. 382-391, Feb. 2003.
  12. J. J. O'Reilly, P. M. Lane, R. Heidemann and R. Hofstetter, "Optical generation of very narrow linewidth millimeter wave signals", Electron. Lett., vol. 28, pp. 2309-2311, 1992.
  13. M. Mielke, G. A. Alphonse and P. J. Delfyett, "168 channels x 6 GHz from a multiwavelength mode-locked semiconductor laser", IEEE Photon. Technol. Lett., vol. 15, no. 4, pp. 501-503, Apr. 2003.
  14. W. Hu, T. Tanaka, K. Inagaki and A. Xu, "50 GHz WDM sources and its uplink system using two-mode injection-locked Fabry-Perot lasers and electro-absorption modulator for millimeter-wave radio-on-fiber communications", in Proc. Optical Fiber Communication (OFC 2003), Atlanta, GA, 2003, pp. 145-146.
  15. U. Gliese, S. Norskov and T. N. Nielsen, "Chromatic dispersion in fiber-optic microwave and millimeter-wave links", IEEE Trans. Microwave Theory Tech., vol. 44, no. 10, pp. 1716-1724, Oct. 1996.
  16. R. A. Griffin, P. M. Lane and J. J. O'Reilly, "Dispersion-tolerant subcarrier data modulation of optical millimeter-wave signals", Electron. Lett., vol. 32, pp. 2258-2260, 1996.
  17. G. H. Smith, D. Novak and Z. Ahmed, "Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators", IEEE Trans. Microwave Theory Tech., vol. 45, no. 8, pp. 1410-1415, Aug. 1997.
  18. S. Arahira and Y. Ogawa, "Passive and hybrid modelockings in a multi-electrode DBR laser with two gain sections", Electron. Lett., vol. 31, pp. 808-809, 1995.
  19. D. von der Linde, "Characterization of the noise in continuously operating mode-locking lasers", Appl. Phys. B, Photophys. Laser Chem., vol. 39, pp. 201-217, 1986.
  20. B. R. Clarke, "Mode partition noise introduced by optical filtering", Electron. Lett, vol. 25, pp. 211-212, 1989.
  21. C. Lim, A. Nirmalathas, D. Novak and R. Waterhouse, "Impact of ASE on phase noise in LMDS incorporating optical fiber backbones", in Proc. Microwave Photonics (MWP 2000), vol. 1, 2000, pp. 148-151.
  22. M. Mielke, G. A. Alphonse and P. J. Delfyett, Jr., "Reduction of mode partition noise in a multiwavelength semiconductor laser through hybrid modelocking", in Proc. Conf. Lasers Electro-Optics (CLEO 2002), vol. 1, 2002, pp. 348-349.
  23. H. Schmuck, "Comparison of optical millimeter-wave system concepts with regard to chromatic dispersion", Electron. Lett., vol. 31, pp. 1848-1849, 1995.
  24. C. Lim, D. Novak, A. Nirmalathas and G. H. Smith, "Dispersion-induced power penalties in millimeter-wave signal transmission using multisection DBR semiconductor laser", IEEE Trans. Microwave Theory Tech., vol. 49, no. 2, pp. 288-296, Feb. 2001.
  25. A. V. Tran, W. D. Zhong, R. S. Tucker and R. Lauder, "Optical add-drop multiplexers with low crosstalk", IEEE Photon. Technol. Lett., vol. 13, no. 6, pp. 582-584, Jun. 2001.

Other (25)

H. Al-Raweshidy and S. Komaki, Radio Over Fiber Technologies for Mobile Communications Networks, Norwood, MA: Artech House, 2002.

H. Kawamura, N. Imai, E. Ogawa and H. Inomata, "High-speed data transmission using millimeter-wave fiber-optic links", IEICE Trans. Communications, pp. 1784-1791, 1996.

C. Lim, A. Nirmalathas, M. Attygalle, D. Novak and R. Waterhouse, "On the merging of millimeter-wave fiber radio backbone with 25 GHz WDM ring network", J. Lightw. Technol. , vol. 21, no. 10, pp. 2203-2210, Oct. 2003.

J. Park and K. Y. Lau, "Millimeter-wave (39 GHz) fiber-wireless transmission of broadband multichannel compressed digital video", Electron. Lett., vol. 32, pp. 474-475, 1996.

C. Lim, A. Nirmalathas, D. Novak, R. Waterhouse and G. Yoffe, "Millimeter-wave broad-band fiber-wireless system incorporating baseband data transmission over fiber and remote LO delivery", J. Lightw. Technol., vol. 18, no. 10, pp. 1355-1363, Oct. 2000.

D. Novak, Z. Ahmed, R. B. Waterhouse and R. S. Tucker, "Signal generation using pulsed semiconductor lasers for application in millimeter-wave wireless links", IEEE Trans. Microwave Theory Tech., vol. 43, no. 9, pp. 2257-2262, Sep. 1995.

A. J. C. Vieira, P. R. Herczfeld, A. Rosen, M. Ermold, E. E. Funk, W. D. Jemison and K. J. Williams, "A mode-locked microchip laser optical transmitter for fiber radio", IEEE Trans. Microwave Theory Tech., vol. 49, no. 10, pp. 1882-1887, Oct. 2001.

C. H. von Helmolt, U. Kruger, K. Kruger and G. Grosskopf, "A mobile broad-band communication system based on mode-locked lasers", IEEE Trans. Microwave Theory Tech., vol. 45, no. 8, pp. 1424-1430, Aug. 1997.

G. J. Simonis and K. G. Purchase, "Optical generation, distribution and control of microwaves using laser heterodyne", IEEE Trans. Microwave Theory Tech., vol. 38, no. 5, pp. 667-669, May 1990.

D. Wake, C. R. Lima and P. A. Davies, "Optical generation of millimeter-wave signals for fiber-radio systems using a dual-mode DFB semiconductor laser", IEEE Trans. Microwave Theory Tech., vol. 43, no. 9, pp. 2270 -2276, Sep. 1995.

M. Ogusu, K. Inagaki, Y. Mizuguchi and T. Ohira, "Carrier generation and data transmission on millimeter-wave bands using two-mode locked Fabry-P�rot lasers", IEEE Trans. Microwave Theory Tech., vol. 51, no. 2, pp. 382-391, Feb. 2003.

J. J. O'Reilly, P. M. Lane, R. Heidemann and R. Hofstetter, "Optical generation of very narrow linewidth millimeter wave signals", Electron. Lett., vol. 28, pp. 2309-2311, 1992.

M. Mielke, G. A. Alphonse and P. J. Delfyett, "168 channels x 6 GHz from a multiwavelength mode-locked semiconductor laser", IEEE Photon. Technol. Lett., vol. 15, no. 4, pp. 501-503, Apr. 2003.

W. Hu, T. Tanaka, K. Inagaki and A. Xu, "50 GHz WDM sources and its uplink system using two-mode injection-locked Fabry-Perot lasers and electro-absorption modulator for millimeter-wave radio-on-fiber communications", in Proc. Optical Fiber Communication (OFC 2003), Atlanta, GA, 2003, pp. 145-146.

U. Gliese, S. Norskov and T. N. Nielsen, "Chromatic dispersion in fiber-optic microwave and millimeter-wave links", IEEE Trans. Microwave Theory Tech., vol. 44, no. 10, pp. 1716-1724, Oct. 1996.

R. A. Griffin, P. M. Lane and J. J. O'Reilly, "Dispersion-tolerant subcarrier data modulation of optical millimeter-wave signals", Electron. Lett., vol. 32, pp. 2258-2260, 1996.

G. H. Smith, D. Novak and Z. Ahmed, "Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators", IEEE Trans. Microwave Theory Tech., vol. 45, no. 8, pp. 1410-1415, Aug. 1997.

S. Arahira and Y. Ogawa, "Passive and hybrid modelockings in a multi-electrode DBR laser with two gain sections", Electron. Lett., vol. 31, pp. 808-809, 1995.

D. von der Linde, "Characterization of the noise in continuously operating mode-locking lasers", Appl. Phys. B, Photophys. Laser Chem., vol. 39, pp. 201-217, 1986.

B. R. Clarke, "Mode partition noise introduced by optical filtering", Electron. Lett, vol. 25, pp. 211-212, 1989.

C. Lim, A. Nirmalathas, D. Novak and R. Waterhouse, "Impact of ASE on phase noise in LMDS incorporating optical fiber backbones", in Proc. Microwave Photonics (MWP 2000), vol. 1, 2000, pp. 148-151.

M. Mielke, G. A. Alphonse and P. J. Delfyett, Jr., "Reduction of mode partition noise in a multiwavelength semiconductor laser through hybrid modelocking", in Proc. Conf. Lasers Electro-Optics (CLEO 2002), vol. 1, 2002, pp. 348-349.

H. Schmuck, "Comparison of optical millimeter-wave system concepts with regard to chromatic dispersion", Electron. Lett., vol. 31, pp. 1848-1849, 1995.

C. Lim, D. Novak, A. Nirmalathas and G. H. Smith, "Dispersion-induced power penalties in millimeter-wave signal transmission using multisection DBR semiconductor laser", IEEE Trans. Microwave Theory Tech., vol. 49, no. 2, pp. 288-296, Feb. 2001.

A. V. Tran, W. D. Zhong, R. S. Tucker and R. Lauder, "Optical add-drop multiplexers with low crosstalk", IEEE Photon. Technol. Lett., vol. 13, no. 6, pp. 582-584, Jun. 2001.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.