Abstract

Optical data links and bus systems are becoming increasingly attractive for automobiles. In 1998, a first optical data bus system, based on polymer optical fibers and visible light-emitting diodes was introduced in Mercedes-Benz cars to interconnect information and entertainment devices within the passenger compartment. Since 2002, media-oriented system transport (MOST) is the standard for an optical infotainment data bus system in the automotive industry. However, with increasing demands on network flexibility,robustness, safety-relevant functions, and data rate, the currently used technologies reach their limit. A new physical layer, based on 200-µm polymer-cladded silica fibers and infrared-emitting vertical-cavity surface-emitting lasers, is a promising solution. This paper provides an overview about the state-of-the-art physical layer of standard MOST data bus systems,shows its limitations, and presents new optical-physical-layer concepts for next-generation data bus systems in cars.

© 2004 IEEE

PDF Article

References

  • View by:
  • |

  1. The Institute of Systems Research, Maryland, MI. [Online]. Available: http://www.isr.umd.edu/ISR/publications/newsletter/sssp97/autos.html
  2. "Das Vernetzte Auto, Trends und Lösungsansätze Für die Automobilelektronik der Zukunft", Elektronik Praxis, no. 15, pp. 24-25, Aug. 2001.
  3. "Road Vehicles, Interchange of Digital Information-Controller Area Network (CAN) for High Speed Communications", ISO Standard ISO 11 898:1993 (E), Nov. 1993.
  4. M. Farsi and M. Barbosa, CANopen Implementation:Applications to Industrial Networks, Hertfordshire: U.K.: Research Studies Press, Ltd., 2000.
  5. "CAN node sales", Hansen Rep. Automotive Electronics, vol. 13, no. 9, pp. 1-1, 2000.
  6. T. Costlow, "Automotive networking", Automot. Eng. Int., pp. 80-83, May 2003.
  7. D. Seidl, P. Merget, J. Schneider, R. Weniger and E. Zeeb, "Applications of POF's in data links of mobile systems", in Proc. 7th Int. Polymer Optical Fiber (POF) Conf., Berlin, Germany,Oct. 1998, pp. 205-211.
  8. C. Thiel and R. König, "Media oriented systems transport (MOST) standard for multi-media networking in vehicle environment", in VDI Berichte, vol. 1415, 1998, pp. 819- 834.
  9. MOST Cooperation Official. [Online]. Available: http://www.mostcooperation.com
  10. Byteflight Official. [Online]. Available: http://www.byteflight.com
  11. J. Berwanger, M. Peller and R. Griessbach. A New High-Performance Data Bus System for Safety-Related Applications. [Online]. Available: http://www.byteflight.com/presentations/
  12. A. Weinert, Plastic Optical Fibers, Erlangen: Germany: Publicis MCD Verlag, 1999.
  13. J. Marcou, M. Robiette and J. Bulabois, Plastic Optical Fibers, New York: Wiley, 1997.
  14. W. Daum, J. Krauser, P. E. Zamzow and O. Ziemann, POF Polymer Optical Fibers for Data Communication, Berlin: Germany: Springer-Verlag, 2002.
  15. W. Daum, A. Brockmeyer and L. Goehlich, "Influence of environmental stress factors on transmission loss of polymer optical fibers", in Proc. Polymer Optical Fiber (POF) Conf., Oct. 1993, pp. 94- 98.
  16. N. Sudo and S. Kobayashi, "Optical connectors for high performance plastic optical fiber", in Proc. Polymer Optical Fiber (POF) Conf., Chiba, Japan,July 1999, pp. 213-216.
  17. A. Engel and D. Schramm, "Optisches bussystem für automobile netzwerke", in F&M, Jahrg., vol. 108, 7-8 2000, pp. 53- 56.
  18. T. Ono, "Plastic optical fiber: The missing link for factory, office equipment", Photonics Spectra , pp. 88-91, Nov. 1995.
  19. R. Vieweg and F. Esser, "Polymethylmethacrylate," in Kunststoff-Handbuch, München: Hanser-Verlag, 1975,vol. Bd. IX.
  20. M. Murofushi, "Low loss perfluorinated POF", in Proc. Polymer Optical Fiber (POF) Conf., Paris, France,Oct. 1996, pp. 17- 23.
  21. B. Bautevin and A. Rousseau, "New halogenated monomers and polymers for low loss plastic optical fiber", Fiber Integr. Opt., vol. 13, pp. 309-319, 1994.
  22. K. Kogenazawa and T. Onishi, "Progress in perfluorinated GI-POF, LUCINATM", in Proc. Polymer Optical Fiber (POF) Conf., Boston, MA, Sept. 2000, pp. 19- 21.
  23. Y. Koike, "Progress of plastic optical fiber technology", in Proc. 22nd Eur. Conf. Optical Communication (ECOC), Oslo, Norway, 1996, pp. 1.41-1.48.
  24. T. Onishi, H. Murofushi, Y. Watanabe, Y. Takano, R. Yoshida and M. Naritomi, "Recent progess of perfluorinated GI POF", in Proc. Polymer Optical Fiber (POF) Conf., Berlin, Germany,Oct. 1998, pp. 39- 42.
  25. G. D. Khoe, et al. "Exploring the use of GIPOF systems in the 640 nm to 1300 nm wavelength area design", in Proc. Polymer Optical Fiber (POF) Conf., Chiba, Japan,July 1999, pp. 36-43.
  26. Y. Koike, "Progress in GI-POF-Status of high speed plastic optical fiber and its future prospect", in Proc. Polymer Optical Fiber (POF) Conf., Boston, MA, Sept. 2000, pp. 1- 5.
  27. R. J. S. Bates, S. D. Walker and M. Yaseen, "A 256 mbit/s, 100 m plastic optical fiber data link using a 652 nm transmitter for customer premises network applications", in Proc. Eur. Conf. Optical Communication (ECOC 1992), vol. 1, pp. 297-300.
  28. T. Schaal, S. Seiffert, S. Poferl and E. Zeeb, "Mode excitation in standard large core PMMA fibers", in Proc. 9th Int. Plastic Optical Fibers Conf. (POF), Boston, MA, 2000, pp. 203-208.
  29. D. Kalymnios, "Squeezing more bandwidth into high NA POF", in Proc. Polymer Optical Fiber (POF) Conf., Chiba, Japan,July 1999, pp. 18-24.
  30. S. Miller, and I. Kaminow, Eds., Optical Fiber Telecommunication II, San Diego, CA: Academic, ch. 12.
  31. E. F. Schubert, Y. H. Wang, A. Y. Cho, L.-W. Tu and G. J. Zydzik, "Resonant cavity light-emitting diode", Appl. Phys. Lett., vol. 60, no. 8, pp. 921-923, 1992.
  32. E. Schubert, N. Hunt, M. Micovic, D. Sivco, A. Cho and G. Zydzik, "Highly efficient light emitting diodes with microcavities", Science , vol. 265, pp. 943-945, Aug. 1994.
  33. E. Schubert, E. Hunt, R. Malik, M. Micovic and D. Hunt, "Temperature and modulation characteristics of resonant-cavity light emitting diodes", J. Lightwave Technol., vol. 14, pp. 1721-1729, July 1996.
  34. M. Guina, et al. "Light-Emitting diode emitting at 650 nm with 200-MHz small-signal modulation bandwidth", IEEE Photon. Technol. Lett., vol. 12, pp. 786-788, July 2000.
  35. K. Streubel, U. Helin, V. Oskarsson, E. Backlin and A. Johanson, "High-brightness visible (660 nm) resonant-cavity light emitting diode", IEEE Photon. Technol. Lett., vol. 10, pp. 1687-1689, Dec. 1998.
  36. P. Modak, et al. "AlGaInP microcavity light emitting diodes at 650 nm on Ge substrates", IEEE Photon. Technol. Lett., vol. 12, pp. 957-959, Aug. 2000.
  37. R. Wirth, C. Karnutsch, S. Kugler and K. Streubel, "High-Efficiency resonant-cavity LED's emitting at 650 nm", IEEE Photon. Technol. Lett., vol. 13, pp. 421 -423, May 2001.
  38. S. Poferl, "Konzeption und Aufbau Eines Lichtwellenleiterübertragungssystems für Kraftfahrzeuge", Diploma, Dept. Optoelektronic, Aalen University of Applied Science, Aalen, Germany, 1999.
  39. "Plastic Fiber Optic Transmitter Including Bigfoot IC for MOST, SPF MIT3 02", Infineon Technologies AG, München, Germany,
  40. "SFH75x, 505 nm InGaN LED", Infineon Technologies AG, München, Germany,
  41. "High-Speed Transmitter Optical Sub-Assembly in Optimized Side-Looker Encapsulation,650 nm RCLED, FC100R-010", Firecomms Ltd., Cork, Ireland,
  42. "1A466, 650 nm Resonant Cavity LED", Zarlink Semiconductor (formerly Mitel Corporation), Ottawa, ON, Canada,
  43. T. Schaal and E. Zeeb, "High-speed optical data transmission using standard PMMA fibers", in Proc. Polymer Optical Fiber (POF) Conf., Amsterdam, The Netherlands,Sept. 2001, pp. 181-186.
  44. A. Knigge, R. Franke, S. Knigge, B. Sumpf, K. Vogel, M. Zorn, M. Weyers and G. Trankle, "650-nm vertical-cavity surface-emitting lasers: Laser properties and reliability investigations", IEEE Photon. Technol. Lett., vol. 14, pp. 1385-1387, Oct. 2002.
  45. A. Knigge, M. Zorn, H. Wenzel, M. Weyers and G. Trankle, "High efficiency AlGaInP/AlGaAs vertical-cavity surface-emitting lasers with 650 nm wavelength", in Proc. 28th Int. Symp. Compound Semiconductors, Bristol, U.K., 2002, pp. 189-194.
  46. "Si PIN Photodiode, S6801", Hamamatsu Photonics, Hamamatsu City, Japan, pt. 1,
  47. E. Hartl, N. Schunk and E. Baur, "Calculation of coupling efficiency of polymer optical fibers (POF) to small area photo detectors", presented at the Polymer Optical Fiber (POF) Conf., Amsterdam, The Netherlands,Sept. 2001.
  48. I. Garcés, J. Mateo, A. Losada and M. Bajo, "Bi-directional ethernet link over a single plastic optical fiber using POF couplers", in Proc. Polymer Optical Fiber (POF) Conf., Chiba, Japan, 1999, pp. 154-157.
  49. Y. Toriumi, "A full-duplex optical transceiver using single POF for 1394", presented at the Polymer Optical Fiber (POF) World Conf., San Jose, CA, Paper 2.3, 2000.
  50. O. Ziemann, "Bi-Directional transmission over plastic optical fibers", in Proc. Polymer Optical Fiber (POF) Conf., Kauai, HI, Sept. 1997, pp. 48- 49.
  51. K. Saito, "POF WDM technology and applications", presented at the Polymer Optical Fiber (POF) World Conf., San Jose, CA, Paper 2.2, 2000.
  52. F. Weberpals, E. Baur, J. Wittl, J. Meier, T. Lichtenegger and H. Hurt, "Additional MOST transceiver features", presented at the Polymer Optical Fiber (POF) Conf., Seattle, WA, Sept. 2003.
  53. "MOST Specification of Physical Layer, Rev. 1.1", MOST Cooperation Standard, 2003.
  54. "MOST Connector System", Tyco Electronics Co., Wilmington, DE,
  55. E. Zeeb, "Optical data bus systems in cars: Current status and future challenges", in Proc. Eur. Conf. Optical Communicaiton (ECOC 2001), vol. 1, Amsterdam, The Netherlands, 2001, pp. 70-71.
  56. OFS, HCS Product Line. [Online]. Available: http://www.fiber-wire.com
  57. Hard Polymer Clad Optical Fibers Product Line. Polymicro Technologies, [Online]. Available: http://www.polymicro.com
  58. J. Miller, private communication, 2003.
  59. OFS, HCS Low OH Fiber, CF 01493, Data Sheet. [Online]. Available: http://www.fiber-wire.com.
  60. A. Engel, "Optical interconnection systems from Tyco electronics", presented at MOST Interconnectivity Conf. [Online]. Available: http://www.mostnet.de/news/Conferences+%26+Presentations/2000/1/7/files/TycoAMP_Presentation.pdf
  61. T. Hultermans, Device Interconnection-Laser Processing of Fibers. [Online]. Available: http://www.tycoelectronics.com/fiberoptics/documents/Laserprocessing.pdf
  62. "In-Line Connector Sample", Yazaki North America, Canton, MI, pt. 1,
  63. L. A. Coldren and B. J. Thibeault, "Vertical-cavity surface-emitting lasers," in Optical Fiber Telecommunications IIIB, New York: Academic, 1997, pp. 200-266 .
  64. M. H. Crawford, W. W. Chow, K. D. Choquette and K. L. Lear, "Design, fabrication and performance of infrared and visible vertical-cavity surface-emitting lasers", IEEE J. Quantum Electron., vol. 33, pp. 1810-1824, Oct. 1997.
  65. J. Heinrich, E. Zeeb and K. J. Ebeling, "Butt-coupling efficiency of VCSEL's into multimode fibers", IEEE Photon. Technol. Lett., vol. 9, pp. 1555-1557, Dec. 1997.
  66. R. Michalzik, P. Schnitzer, U. Fiedler, D. Wiedenmann and K. J. Ebeling, "High-bit-rate data transmission with short-wavelength oxidized VCSEL's, toward bias-free operation", IEEE J. Select. Topics Quantum Electron., vol. 3, pp. 396-404, Apr. 1997.
  67. B. M. Hawkins, R. A. HawthorneIII, J. K. Guenter, J. A. Tatum and J. R. Biard, "Reliability of various size oxide aperture vcsels", in Proc. Electronic Components Technology Conf. (ECTC 2002), San Diego, CA, May 2002, pp. 540-550.
  68. T. Wipiejewski, et al. "Performance and reliability of oxide confined VCSELs", in Proc. 49th Electronic Components Technology Conf. (ECTC 1999), 1999, pp. 741-756.
  69. "850 nm VCSEL TMC 5F40", Truelight Corporation, Hsinchu, Taiwan, R.O.C,
  70. "Safety of Laser Product Part 1: Equipment Classification, Requirements and User's Guide", pt. 1, IEC 60 825-1:1993+A1:1997+A2:2001,
  71. "Safety of Laser Product Part 2: Safety of Optical Fiber Communication Systems", International Electrotecnical Commission, pt. 1, IEC 60 825-2, 1993.
  72. S. G. Poferl, M. Krieg, O. Hocky and E. Zeeb, "VCSEL-based transmitter module for automotive temperature range between -55 °C and +125 °C ", in Proc. SPIE, vol. 4942, Brugge, Belgium,Oct. 2002, pp. 63-71.
  73. "Transceiver samples", Yazaki North America, Canton, MI,
  74. "Harman Becker Audio Gateway", Harman Becker GmbH, Karlsbad, Germany,
  75. E. Zeeb and B. Johnson, "MOST-Physical layer progress report", presented at the 4th Automotive LAN Seminar, Tokyo, Japan,Nov. 7-8, 2002.
  76. W. Stallings, Local and Metropolitan Area Networks, 3rd ed. New York: Macmillian, 1990, ch. 4.
  77. J. Heinrich, M. Rode, K. Pressmar and E. Zeeb, "Low-cost VCSEL-transceiver module for optical data buses", in Proc. IEEE Lasers Electro-Optics Society (LEOS) 10th Annu. Meeting , San Francisco, CA, Nov. 1997, pp. 58-59.
  78. R. Bäuerle, S. Poferl, S. Seiffert and E. Zeeb, "HCS fiber based optical star net for automotive applications", in Proc. IEEE Lasers Electro-Optics Society (LEOS), Nov. 2000, pp. 496-497.
  79. T. Kibler, J. Guttmann, H.-P. Huber and E. Zeeb, "Planar star couplers for 200 µm multimode PCS fibers", presented at the IEEE Lasers Electro-Optics Society (LEOS), Tucson, AZ, Oct. 26-30, 2003.
  80. T. Paatzsch, et al. "Polymer star couplers for optical backplane interconnects fabricated by LIGA technique", in Proc. Polymer Optical Fiber (POF) Conf., Chiba, Japan,July 1999, pp. 226-229.
  81. M. Stockmann and H.-H. Witte, "Planar star coupler for multimode fibers", Appl. Opt., vol. 19, no. 15, pp. 2584-2588, 1980.
  82. R. A. Davis, "Fiber optic star coupler for a 32-terminal data bus system", IEEE Trans. Comp., Hybrids, Manufact. Technol., vol. CHMT-4, pp. 356-360, Dec. 1981.
  83. J. Krieger and J. Czabanski, "Folienleiter ersetzen kabel", Automobil Industrie, pp. 82-85, 1999.
  84. B. Shorrock, "PCB innovations in automotive electronics the flexible drive", Electronic Eng., vol. 70, no. 862, pp. 33-34, Nov. 1998.
  85. T. Kibler, M. Rode, J. Moisel and E. Zeeb, "Integration of optical fbers into flat flexible cables and flat wiring concepts for automotive application", in Proc. 10th Int. Polymer Optical Fiber (POF) Conf., Amsterdam, The Netherlands,Sept. 2001, pp. 193- 199.
  86. Laminated FFC sample. Panta GmbH, Radeberg, Germany. [Online]. Available: http://www.panta.de
  87. Extruded FFC sample. I & T Flachleiter Produktions-Ges.m.b.H., Seigendorf, Austria. [Online]. Available: http://www.innovation-technology.at
  88. J. Moisel, et al. "Polymer waveguides for 100 cm (40') optical backplanes", in Proc. SPIE, vol. 4805, Seattle, WA, July 2002, pp. 98-105.
  89. S. Lehmacher and A. Neyer, "Integration of polymer optical waveguides into printed circuit boards", in Proc. Microtechnologies Congr. (MICRO.tec 2000), vol. 1, Hannover, Germany,Sept. 2000, pp. 111-114.
  90. M. Rode, J. Moisel, O. Krumpholz and O. Schickl, "Novel optical backplane board-to-board interconnection", in Proc. Integrated Optics Optical Fiber Communication-Eur. Conf. Optical Communications (IOOC-ECOC 97), vol. 2, June 1997, pp. 228-231.
  91. E. Griese, "Optical interconnection technology for PCB applications", Printed Circuit Fabrication, vol. 25, no. 6, pp. 20-36, June 2002.
  92. T. Kibler, K. Pregitzer, C. Rief, E. Zeeb, A. Neyer and O. S. Kaiser, "Optical transceiver module for star networks in cars", in Proc. SPIE, vol. 4942, Brugge, Belgium,Oct. 2002, pp. 54-62.
  93. S. Lehmacher and A. Neyer, "Integration of polymer optical waveguides into printed circuit boards", in Proc. Microtechnologies Congr. (MICRO.tec 2000), vol. 1, Hannover, Germany,Sept. 2000, pp. 111-114.

J. Lightwave Technol. (1)

E. Schubert, E. Hunt, R. Malik, M. Micovic and D. Hunt, "Temperature and modulation characteristics of resonant-cavity light emitting diodes", J. Lightwave Technol., vol. 14, pp. 1721-1729, July 1996.

Other (92)

M. Guina, et al. "Light-Emitting diode emitting at 650 nm with 200-MHz small-signal modulation bandwidth", IEEE Photon. Technol. Lett., vol. 12, pp. 786-788, July 2000.

K. Streubel, U. Helin, V. Oskarsson, E. Backlin and A. Johanson, "High-brightness visible (660 nm) resonant-cavity light emitting diode", IEEE Photon. Technol. Lett., vol. 10, pp. 1687-1689, Dec. 1998.

P. Modak, et al. "AlGaInP microcavity light emitting diodes at 650 nm on Ge substrates", IEEE Photon. Technol. Lett., vol. 12, pp. 957-959, Aug. 2000.

R. Wirth, C. Karnutsch, S. Kugler and K. Streubel, "High-Efficiency resonant-cavity LED's emitting at 650 nm", IEEE Photon. Technol. Lett., vol. 13, pp. 421 -423, May 2001.

S. Poferl, "Konzeption und Aufbau Eines Lichtwellenleiterübertragungssystems für Kraftfahrzeuge", Diploma, Dept. Optoelektronic, Aalen University of Applied Science, Aalen, Germany, 1999.

"Plastic Fiber Optic Transmitter Including Bigfoot IC for MOST, SPF MIT3 02", Infineon Technologies AG, München, Germany,

"SFH75x, 505 nm InGaN LED", Infineon Technologies AG, München, Germany,

"High-Speed Transmitter Optical Sub-Assembly in Optimized Side-Looker Encapsulation,650 nm RCLED, FC100R-010", Firecomms Ltd., Cork, Ireland,

"1A466, 650 nm Resonant Cavity LED", Zarlink Semiconductor (formerly Mitel Corporation), Ottawa, ON, Canada,

T. Schaal and E. Zeeb, "High-speed optical data transmission using standard PMMA fibers", in Proc. Polymer Optical Fiber (POF) Conf., Amsterdam, The Netherlands,Sept. 2001, pp. 181-186.

A. Knigge, R. Franke, S. Knigge, B. Sumpf, K. Vogel, M. Zorn, M. Weyers and G. Trankle, "650-nm vertical-cavity surface-emitting lasers: Laser properties and reliability investigations", IEEE Photon. Technol. Lett., vol. 14, pp. 1385-1387, Oct. 2002.

A. Knigge, M. Zorn, H. Wenzel, M. Weyers and G. Trankle, "High efficiency AlGaInP/AlGaAs vertical-cavity surface-emitting lasers with 650 nm wavelength", in Proc. 28th Int. Symp. Compound Semiconductors, Bristol, U.K., 2002, pp. 189-194.

"Si PIN Photodiode, S6801", Hamamatsu Photonics, Hamamatsu City, Japan, pt. 1,

E. Hartl, N. Schunk and E. Baur, "Calculation of coupling efficiency of polymer optical fibers (POF) to small area photo detectors", presented at the Polymer Optical Fiber (POF) Conf., Amsterdam, The Netherlands,Sept. 2001.

I. Garcés, J. Mateo, A. Losada and M. Bajo, "Bi-directional ethernet link over a single plastic optical fiber using POF couplers", in Proc. Polymer Optical Fiber (POF) Conf., Chiba, Japan, 1999, pp. 154-157.

Y. Toriumi, "A full-duplex optical transceiver using single POF for 1394", presented at the Polymer Optical Fiber (POF) World Conf., San Jose, CA, Paper 2.3, 2000.

O. Ziemann, "Bi-Directional transmission over plastic optical fibers", in Proc. Polymer Optical Fiber (POF) Conf., Kauai, HI, Sept. 1997, pp. 48- 49.

K. Saito, "POF WDM technology and applications", presented at the Polymer Optical Fiber (POF) World Conf., San Jose, CA, Paper 2.2, 2000.

F. Weberpals, E. Baur, J. Wittl, J. Meier, T. Lichtenegger and H. Hurt, "Additional MOST transceiver features", presented at the Polymer Optical Fiber (POF) Conf., Seattle, WA, Sept. 2003.

"MOST Specification of Physical Layer, Rev. 1.1", MOST Cooperation Standard, 2003.

"MOST Connector System", Tyco Electronics Co., Wilmington, DE,

E. Zeeb, "Optical data bus systems in cars: Current status and future challenges", in Proc. Eur. Conf. Optical Communicaiton (ECOC 2001), vol. 1, Amsterdam, The Netherlands, 2001, pp. 70-71.

OFS, HCS Product Line. [Online]. Available: http://www.fiber-wire.com

Hard Polymer Clad Optical Fibers Product Line. Polymicro Technologies, [Online]. Available: http://www.polymicro.com

J. Miller, private communication, 2003.

OFS, HCS Low OH Fiber, CF 01493, Data Sheet. [Online]. Available: http://www.fiber-wire.com.

A. Engel, "Optical interconnection systems from Tyco electronics", presented at MOST Interconnectivity Conf. [Online]. Available: http://www.mostnet.de/news/Conferences+%26+Presentations/2000/1/7/files/TycoAMP_Presentation.pdf

T. Hultermans, Device Interconnection-Laser Processing of Fibers. [Online]. Available: http://www.tycoelectronics.com/fiberoptics/documents/Laserprocessing.pdf

"In-Line Connector Sample", Yazaki North America, Canton, MI, pt. 1,

L. A. Coldren and B. J. Thibeault, "Vertical-cavity surface-emitting lasers," in Optical Fiber Telecommunications IIIB, New York: Academic, 1997, pp. 200-266 .

M. H. Crawford, W. W. Chow, K. D. Choquette and K. L. Lear, "Design, fabrication and performance of infrared and visible vertical-cavity surface-emitting lasers", IEEE J. Quantum Electron., vol. 33, pp. 1810-1824, Oct. 1997.

J. Heinrich, E. Zeeb and K. J. Ebeling, "Butt-coupling efficiency of VCSEL's into multimode fibers", IEEE Photon. Technol. Lett., vol. 9, pp. 1555-1557, Dec. 1997.

R. Michalzik, P. Schnitzer, U. Fiedler, D. Wiedenmann and K. J. Ebeling, "High-bit-rate data transmission with short-wavelength oxidized VCSEL's, toward bias-free operation", IEEE J. Select. Topics Quantum Electron., vol. 3, pp. 396-404, Apr. 1997.

B. M. Hawkins, R. A. HawthorneIII, J. K. Guenter, J. A. Tatum and J. R. Biard, "Reliability of various size oxide aperture vcsels", in Proc. Electronic Components Technology Conf. (ECTC 2002), San Diego, CA, May 2002, pp. 540-550.

T. Wipiejewski, et al. "Performance and reliability of oxide confined VCSELs", in Proc. 49th Electronic Components Technology Conf. (ECTC 1999), 1999, pp. 741-756.

"850 nm VCSEL TMC 5F40", Truelight Corporation, Hsinchu, Taiwan, R.O.C,

"Safety of Laser Product Part 1: Equipment Classification, Requirements and User's Guide", pt. 1, IEC 60 825-1:1993+A1:1997+A2:2001,

"Safety of Laser Product Part 2: Safety of Optical Fiber Communication Systems", International Electrotecnical Commission, pt. 1, IEC 60 825-2, 1993.

S. G. Poferl, M. Krieg, O. Hocky and E. Zeeb, "VCSEL-based transmitter module for automotive temperature range between -55 °C and +125 °C ", in Proc. SPIE, vol. 4942, Brugge, Belgium,Oct. 2002, pp. 63-71.

"Transceiver samples", Yazaki North America, Canton, MI,

"Harman Becker Audio Gateway", Harman Becker GmbH, Karlsbad, Germany,

E. Zeeb and B. Johnson, "MOST-Physical layer progress report", presented at the 4th Automotive LAN Seminar, Tokyo, Japan,Nov. 7-8, 2002.

W. Stallings, Local and Metropolitan Area Networks, 3rd ed. New York: Macmillian, 1990, ch. 4.

J. Heinrich, M. Rode, K. Pressmar and E. Zeeb, "Low-cost VCSEL-transceiver module for optical data buses", in Proc. IEEE Lasers Electro-Optics Society (LEOS) 10th Annu. Meeting , San Francisco, CA, Nov. 1997, pp. 58-59.

R. Bäuerle, S. Poferl, S. Seiffert and E. Zeeb, "HCS fiber based optical star net for automotive applications", in Proc. IEEE Lasers Electro-Optics Society (LEOS), Nov. 2000, pp. 496-497.

T. Kibler, J. Guttmann, H.-P. Huber and E. Zeeb, "Planar star couplers for 200 µm multimode PCS fibers", presented at the IEEE Lasers Electro-Optics Society (LEOS), Tucson, AZ, Oct. 26-30, 2003.

T. Paatzsch, et al. "Polymer star couplers for optical backplane interconnects fabricated by LIGA technique", in Proc. Polymer Optical Fiber (POF) Conf., Chiba, Japan,July 1999, pp. 226-229.

M. Stockmann and H.-H. Witte, "Planar star coupler for multimode fibers", Appl. Opt., vol. 19, no. 15, pp. 2584-2588, 1980.

R. A. Davis, "Fiber optic star coupler for a 32-terminal data bus system", IEEE Trans. Comp., Hybrids, Manufact. Technol., vol. CHMT-4, pp. 356-360, Dec. 1981.

J. Krieger and J. Czabanski, "Folienleiter ersetzen kabel", Automobil Industrie, pp. 82-85, 1999.

B. Shorrock, "PCB innovations in automotive electronics the flexible drive", Electronic Eng., vol. 70, no. 862, pp. 33-34, Nov. 1998.

T. Kibler, M. Rode, J. Moisel and E. Zeeb, "Integration of optical fbers into flat flexible cables and flat wiring concepts for automotive application", in Proc. 10th Int. Polymer Optical Fiber (POF) Conf., Amsterdam, The Netherlands,Sept. 2001, pp. 193- 199.

Laminated FFC sample. Panta GmbH, Radeberg, Germany. [Online]. Available: http://www.panta.de

Extruded FFC sample. I & T Flachleiter Produktions-Ges.m.b.H., Seigendorf, Austria. [Online]. Available: http://www.innovation-technology.at

J. Moisel, et al. "Polymer waveguides for 100 cm (40') optical backplanes", in Proc. SPIE, vol. 4805, Seattle, WA, July 2002, pp. 98-105.

S. Lehmacher and A. Neyer, "Integration of polymer optical waveguides into printed circuit boards", in Proc. Microtechnologies Congr. (MICRO.tec 2000), vol. 1, Hannover, Germany,Sept. 2000, pp. 111-114.

M. Rode, J. Moisel, O. Krumpholz and O. Schickl, "Novel optical backplane board-to-board interconnection", in Proc. Integrated Optics Optical Fiber Communication-Eur. Conf. Optical Communications (IOOC-ECOC 97), vol. 2, June 1997, pp. 228-231.

E. Griese, "Optical interconnection technology for PCB applications", Printed Circuit Fabrication, vol. 25, no. 6, pp. 20-36, June 2002.

T. Kibler, K. Pregitzer, C. Rief, E. Zeeb, A. Neyer and O. S. Kaiser, "Optical transceiver module for star networks in cars", in Proc. SPIE, vol. 4942, Brugge, Belgium,Oct. 2002, pp. 54-62.

S. Lehmacher and A. Neyer, "Integration of polymer optical waveguides into printed circuit boards", in Proc. Microtechnologies Congr. (MICRO.tec 2000), vol. 1, Hannover, Germany,Sept. 2000, pp. 111-114.

The Institute of Systems Research, Maryland, MI. [Online]. Available: http://www.isr.umd.edu/ISR/publications/newsletter/sssp97/autos.html

"Das Vernetzte Auto, Trends und Lösungsansätze Für die Automobilelektronik der Zukunft", Elektronik Praxis, no. 15, pp. 24-25, Aug. 2001.

"Road Vehicles, Interchange of Digital Information-Controller Area Network (CAN) for High Speed Communications", ISO Standard ISO 11 898:1993 (E), Nov. 1993.

M. Farsi and M. Barbosa, CANopen Implementation:Applications to Industrial Networks, Hertfordshire: U.K.: Research Studies Press, Ltd., 2000.

"CAN node sales", Hansen Rep. Automotive Electronics, vol. 13, no. 9, pp. 1-1, 2000.

T. Costlow, "Automotive networking", Automot. Eng. Int., pp. 80-83, May 2003.

D. Seidl, P. Merget, J. Schneider, R. Weniger and E. Zeeb, "Applications of POF's in data links of mobile systems", in Proc. 7th Int. Polymer Optical Fiber (POF) Conf., Berlin, Germany,Oct. 1998, pp. 205-211.

C. Thiel and R. König, "Media oriented systems transport (MOST) standard for multi-media networking in vehicle environment", in VDI Berichte, vol. 1415, 1998, pp. 819- 834.

MOST Cooperation Official. [Online]. Available: http://www.mostcooperation.com

Byteflight Official. [Online]. Available: http://www.byteflight.com

J. Berwanger, M. Peller and R. Griessbach. A New High-Performance Data Bus System for Safety-Related Applications. [Online]. Available: http://www.byteflight.com/presentations/

A. Weinert, Plastic Optical Fibers, Erlangen: Germany: Publicis MCD Verlag, 1999.

J. Marcou, M. Robiette and J. Bulabois, Plastic Optical Fibers, New York: Wiley, 1997.

W. Daum, J. Krauser, P. E. Zamzow and O. Ziemann, POF Polymer Optical Fibers for Data Communication, Berlin: Germany: Springer-Verlag, 2002.

W. Daum, A. Brockmeyer and L. Goehlich, "Influence of environmental stress factors on transmission loss of polymer optical fibers", in Proc. Polymer Optical Fiber (POF) Conf., Oct. 1993, pp. 94- 98.

N. Sudo and S. Kobayashi, "Optical connectors for high performance plastic optical fiber", in Proc. Polymer Optical Fiber (POF) Conf., Chiba, Japan,July 1999, pp. 213-216.

A. Engel and D. Schramm, "Optisches bussystem für automobile netzwerke", in F&M, Jahrg., vol. 108, 7-8 2000, pp. 53- 56.

T. Ono, "Plastic optical fiber: The missing link for factory, office equipment", Photonics Spectra , pp. 88-91, Nov. 1995.

R. Vieweg and F. Esser, "Polymethylmethacrylate," in Kunststoff-Handbuch, München: Hanser-Verlag, 1975,vol. Bd. IX.

M. Murofushi, "Low loss perfluorinated POF", in Proc. Polymer Optical Fiber (POF) Conf., Paris, France,Oct. 1996, pp. 17- 23.

B. Bautevin and A. Rousseau, "New halogenated monomers and polymers for low loss plastic optical fiber", Fiber Integr. Opt., vol. 13, pp. 309-319, 1994.

K. Kogenazawa and T. Onishi, "Progress in perfluorinated GI-POF, LUCINATM", in Proc. Polymer Optical Fiber (POF) Conf., Boston, MA, Sept. 2000, pp. 19- 21.

Y. Koike, "Progress of plastic optical fiber technology", in Proc. 22nd Eur. Conf. Optical Communication (ECOC), Oslo, Norway, 1996, pp. 1.41-1.48.

T. Onishi, H. Murofushi, Y. Watanabe, Y. Takano, R. Yoshida and M. Naritomi, "Recent progess of perfluorinated GI POF", in Proc. Polymer Optical Fiber (POF) Conf., Berlin, Germany,Oct. 1998, pp. 39- 42.

G. D. Khoe, et al. "Exploring the use of GIPOF systems in the 640 nm to 1300 nm wavelength area design", in Proc. Polymer Optical Fiber (POF) Conf., Chiba, Japan,July 1999, pp. 36-43.

Y. Koike, "Progress in GI-POF-Status of high speed plastic optical fiber and its future prospect", in Proc. Polymer Optical Fiber (POF) Conf., Boston, MA, Sept. 2000, pp. 1- 5.

R. J. S. Bates, S. D. Walker and M. Yaseen, "A 256 mbit/s, 100 m plastic optical fiber data link using a 652 nm transmitter for customer premises network applications", in Proc. Eur. Conf. Optical Communication (ECOC 1992), vol. 1, pp. 297-300.

T. Schaal, S. Seiffert, S. Poferl and E. Zeeb, "Mode excitation in standard large core PMMA fibers", in Proc. 9th Int. Plastic Optical Fibers Conf. (POF), Boston, MA, 2000, pp. 203-208.

D. Kalymnios, "Squeezing more bandwidth into high NA POF", in Proc. Polymer Optical Fiber (POF) Conf., Chiba, Japan,July 1999, pp. 18-24.

S. Miller, and I. Kaminow, Eds., Optical Fiber Telecommunication II, San Diego, CA: Academic, ch. 12.

E. F. Schubert, Y. H. Wang, A. Y. Cho, L.-W. Tu and G. J. Zydzik, "Resonant cavity light-emitting diode", Appl. Phys. Lett., vol. 60, no. 8, pp. 921-923, 1992.

E. Schubert, N. Hunt, M. Micovic, D. Sivco, A. Cho and G. Zydzik, "Highly efficient light emitting diodes with microcavities", Science , vol. 265, pp. 943-945, Aug. 1994.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.