Abstract

This paper demonstrates a flexible optical waveguide film with integrated optoelectronic devices (vertical-cavity surface-emitting laser (VCSEL) and p-i-n photodiode arrays) for fully embedded board-level optical interconnects. The optical waveguide circuit with 45° micromirror couplers was fabricated on a thin flexible polymeric substrate by soft molding. The 45° couplers were fabricated by cutting the waveguide with a microtome blade. The waveguide core material was SU-8 photoresist, and the cladding was cycloolefin copolymer. A thin VCSEL and p-i-n photodiode array were directly integrated on the waveguide film. Measured propagation loss of a waveguide was 0.6 dB/cm at 850 nm.

© 2004 IEEE

PDF Article

References

  • View by:
  • |

  1. D. P. Seraphim and D. E. Barr, "Interconnect and packaging technology in the 90's", in Proc. SPIE. , vol. 1390, 1990, pp. 39-39.
  2. R. O. C. Neugerbauer, R. A. Fillion and T. R. Haller, "Multichip module designs for high performance applications", in Multichip Modules, Compendium of 1989 Papers: International Electronic Packaging Society, vol. 149, 1989.
  3. International SEMATECH, "The National Technology Roadmap for Semiconductors (ITRS)-Technology Needs", Semiconductor Industry Association, pt. 1, 2000.
  4. N. Cravotta, "Wrestlemania: Keeping high-speed-backplane design under control", EDN, pp. 36-46, Aug. 22, 2002.
  5. L. W. Schaper, "Flex and the interconnected mesh power system," in Foldable Flex and Thinned Silicon Multichip Packaging Technology, Norwood, MA: Kluwer, 2003, ch. 12.
  6. R. C. Walker, K. C. Hsieh, T. A. Knotts and C. S. Yen, "A 10 Gb/s Si-bipolar TX/RX chipset for computer data transmission", in Proc. IEEE Int. Solid-State Circuits Conf., vol. 302, Feb. 1998, pp. 302-303.
  7. M. Gruber, S. Sinzinger and J. Jahns, "Optoelectronic multichip module based on planar-integrated free-space optics", in Proc. SPIE, Optics Computing 2000, vol. 4089, 2000.
  8. G. Kim and R. T. Chen, "Three-dimensionally interconnected multi-bus-line bidirectional optical backplane", Opt. Eng. , vol. 38, pp. 9-9, 1999.
  9. E. Griese, "Parallel optical interconnects for high performance printed circuit board", in Proc. 6th Int. Conf. Parallel Interconnects (PI'99), Oct. 1999, pp. 173-173.
  10. Y. Ishii, S. Koike, Y. Aria and Y. Ando, "SMT-compatible optical I/O chip packaging for chip-level optical interconnects", in Proc. Electronic Components Technology Conf. (ECTC), 2001, pp. 870-875.
  11. D. Krabe, F. Ebling, N. Arndt-Staufenbiel, G. Lang and W. Scheel, "New technology for electrical/optical systems on module and board level: The EOCB approach", in Proc. 50th Electronic Components Technology Conf., May 2000, pp. 970-970.
  12. T. Suhara and H. Nishihara, "Integrated optics components and devices using periodic structures", IEEE J. Quantum Electron., vol. QE-22, pp. 845-845, June 1996 .
  13. D. Brundrett, E. Glystis and T. Gaylord, "Homogeneous layer models for high-spatial-frequency dielectric surface-relief gratings", Appl. Opt., vol. 33, pp. 2695-2695, 1994.
  14. D. Y. Kim, S. K. Tripathy, L. Li and J. Kumar, "Laser-induced holographic surface relief gratings on nonlinear optical polymer films", Appl. Phys. Lett. , vol. 66, pp. 1166-1166, 1995.
  15. R. T. Chen, F. Li, M. Dubinovsky and O. Ershov, "Si-based surface-relief polygonal gratings for 1-to-many wafer-scale optical clock signal distribution", IEEE Photon. Technol. Lett., vol. 8, 1996.
  16. R. K. Kostuk, J. W. Goodman and L. Hesselink, "Design considerations for holographic optical interconnects", Appl. Opt., vol. 26, pp. 3947 -3947, 1987.
  17. L. Eldada and J. T. Yardly, "Integration of polymeric micro-optical elements with planar waveguiding circuits", in Proc. SPIE, vol. 3289, 1998, pp. 122-122.
  18. R. T. Chen, L. Lin, C. Choi, Y. Liu, B. Bihari, L. Wu, R. Wickman, B. Picor, M. K. Hibbs-Brenner, J. Bristow and Y. S. Liu, "Fully embedded board-level guided-wave optoelectronic interconnects", Proc. IEEE, vol. 88, pp. 780-793, June 2000.
  19. M. Kagami, A. Kawasaki and H. Ito, "A polymer optical waveguide with out of plane branching mirrors for surface-normal optical interconnections", J. Lightwave Technol., vol. 19, pp. 1949-1955, Dec. 2001.
  20. H. Terui, M. Shimokozono, M. Yanagisawa, T. Hashimoto, Y. Yamashida and M. Horiguchi, "Hybrid integration of eight channel PD-array on silica based PLC using micro-mirror fabrication technique", Electron. Lett., vol. 32, no. 18, 1996 .
  21. Hikita, R. Yoshimura, M. Usui, S. Tomaru and S. Imamura, "Polymeric optical waveguides for optical interconnections", Thin Solid Films, no. 331, pp. 303-303, 1998 .
  22. K. D. Choquette and K. M. Geib, "Fabrication and performance of vertical cavity surface emitting lasers," in Vertical Cavity Surface Emitting lasers, C. Wilmsen, H. Temkin, and L. A. Coldren, Eds. Cambridge: U.K.: Cambridge Univ. Press, 1999, ch. 5 .
  23. H. J. Unold, S. W. Z. Mahmoud, R. Jager, M. Kicherer, M. C. Riedl and K. J. Ebeling, "Improving single-mode VCSEL performance by introducing a long monolithic cavity", IEEE Photon. Technol. Lett., vol. 12, pp. 939-939, Aug. 2000.
  24. N. Nishiyama, M. Arai, S. Shinada, K. Suzuki, F. Koyama and K. Iga, "Multi-oxide layer structure for single-mode operation in vertical-cavity surface-emitting lasers", IEEE Photon. Technol. Lett., vol. 12, pp. 606 -606, June 2000.
  25. D.-S. Song, S.-H. Kim, H.-G. Park, C.-K. Kim and Y. H. Lee, "Single-mode photonic-crystal vertical cavity surface emitting laser", in Conf. Lasers Electro-Optics (CLEO '02) Tech. Dig., vol. 1, 2002, pp. 293-293.
  26. Micorchem Product References. Microchem, Newton, MA. [Online]. Available: http://www.microchem.com/products/pdf/SU82035-2000.pdf
  27. Y. J. Chuang, F. G. Tseng and W. K. Lin, "Reduction of diffraction effect of UV exposure on SU-8 negative hick photoresist by air gap elimination", Microsystems Technologies, vol. 8, pp. 308-308, 2002.
  28. P. D. Curtis, S. Iezeliel, R. E. Miles and C. R. Pescod, "Preliminary investigations into SU-8 as a material for integrated all-optical microwave filters", in High Frequency Postgraduate Student Colloquium, 2000 , vol. 7-8, Sept. 2000, pp. 116-120.
  29. W. H. Wong, J. Zhou and E. Y. B. Pun, "Low-loss polymeric optical waveguides using electron-beam direct writing", Appl. Phys. Lett., vol. 78, pp. 2110-2110, 2001.
  30. C. Choi, L. Lin, Y. Liu and R. T. Chen, "Performance analysis of 10 µ m thick VCSEL array in fully embedded board level guided-wave optoelectronic interconnects", J. Lightwave Technol., vol. 21, pp. 1531-1535, June 2003.

Appl. Opt.

J. Lightwave Technol.

Other

D. P. Seraphim and D. E. Barr, "Interconnect and packaging technology in the 90's", in Proc. SPIE. , vol. 1390, 1990, pp. 39-39.

R. O. C. Neugerbauer, R. A. Fillion and T. R. Haller, "Multichip module designs for high performance applications", in Multichip Modules, Compendium of 1989 Papers: International Electronic Packaging Society, vol. 149, 1989.

International SEMATECH, "The National Technology Roadmap for Semiconductors (ITRS)-Technology Needs", Semiconductor Industry Association, pt. 1, 2000.

N. Cravotta, "Wrestlemania: Keeping high-speed-backplane design under control", EDN, pp. 36-46, Aug. 22, 2002.

L. W. Schaper, "Flex and the interconnected mesh power system," in Foldable Flex and Thinned Silicon Multichip Packaging Technology, Norwood, MA: Kluwer, 2003, ch. 12.

R. C. Walker, K. C. Hsieh, T. A. Knotts and C. S. Yen, "A 10 Gb/s Si-bipolar TX/RX chipset for computer data transmission", in Proc. IEEE Int. Solid-State Circuits Conf., vol. 302, Feb. 1998, pp. 302-303.

M. Gruber, S. Sinzinger and J. Jahns, "Optoelectronic multichip module based on planar-integrated free-space optics", in Proc. SPIE, Optics Computing 2000, vol. 4089, 2000.

G. Kim and R. T. Chen, "Three-dimensionally interconnected multi-bus-line bidirectional optical backplane", Opt. Eng. , vol. 38, pp. 9-9, 1999.

E. Griese, "Parallel optical interconnects for high performance printed circuit board", in Proc. 6th Int. Conf. Parallel Interconnects (PI'99), Oct. 1999, pp. 173-173.

Y. Ishii, S. Koike, Y. Aria and Y. Ando, "SMT-compatible optical I/O chip packaging for chip-level optical interconnects", in Proc. Electronic Components Technology Conf. (ECTC), 2001, pp. 870-875.

D. Krabe, F. Ebling, N. Arndt-Staufenbiel, G. Lang and W. Scheel, "New technology for electrical/optical systems on module and board level: The EOCB approach", in Proc. 50th Electronic Components Technology Conf., May 2000, pp. 970-970.

T. Suhara and H. Nishihara, "Integrated optics components and devices using periodic structures", IEEE J. Quantum Electron., vol. QE-22, pp. 845-845, June 1996 .

H. Terui, M. Shimokozono, M. Yanagisawa, T. Hashimoto, Y. Yamashida and M. Horiguchi, "Hybrid integration of eight channel PD-array on silica based PLC using micro-mirror fabrication technique", Electron. Lett., vol. 32, no. 18, 1996 .

Hikita, R. Yoshimura, M. Usui, S. Tomaru and S. Imamura, "Polymeric optical waveguides for optical interconnections", Thin Solid Films, no. 331, pp. 303-303, 1998 .

K. D. Choquette and K. M. Geib, "Fabrication and performance of vertical cavity surface emitting lasers," in Vertical Cavity Surface Emitting lasers, C. Wilmsen, H. Temkin, and L. A. Coldren, Eds. Cambridge: U.K.: Cambridge Univ. Press, 1999, ch. 5 .

H. J. Unold, S. W. Z. Mahmoud, R. Jager, M. Kicherer, M. C. Riedl and K. J. Ebeling, "Improving single-mode VCSEL performance by introducing a long monolithic cavity", IEEE Photon. Technol. Lett., vol. 12, pp. 939-939, Aug. 2000.

N. Nishiyama, M. Arai, S. Shinada, K. Suzuki, F. Koyama and K. Iga, "Multi-oxide layer structure for single-mode operation in vertical-cavity surface-emitting lasers", IEEE Photon. Technol. Lett., vol. 12, pp. 606 -606, June 2000.

D.-S. Song, S.-H. Kim, H.-G. Park, C.-K. Kim and Y. H. Lee, "Single-mode photonic-crystal vertical cavity surface emitting laser", in Conf. Lasers Electro-Optics (CLEO '02) Tech. Dig., vol. 1, 2002, pp. 293-293.

Micorchem Product References. Microchem, Newton, MA. [Online]. Available: http://www.microchem.com/products/pdf/SU82035-2000.pdf

Y. J. Chuang, F. G. Tseng and W. K. Lin, "Reduction of diffraction effect of UV exposure on SU-8 negative hick photoresist by air gap elimination", Microsystems Technologies, vol. 8, pp. 308-308, 2002.

P. D. Curtis, S. Iezeliel, R. E. Miles and C. R. Pescod, "Preliminary investigations into SU-8 as a material for integrated all-optical microwave filters", in High Frequency Postgraduate Student Colloquium, 2000 , vol. 7-8, Sept. 2000, pp. 116-120.

W. H. Wong, J. Zhou and E. Y. B. Pun, "Low-loss polymeric optical waveguides using electron-beam direct writing", Appl. Phys. Lett., vol. 78, pp. 2110-2110, 2001.

D. Y. Kim, S. K. Tripathy, L. Li and J. Kumar, "Laser-induced holographic surface relief gratings on nonlinear optical polymer films", Appl. Phys. Lett. , vol. 66, pp. 1166-1166, 1995.

R. T. Chen, F. Li, M. Dubinovsky and O. Ershov, "Si-based surface-relief polygonal gratings for 1-to-many wafer-scale optical clock signal distribution", IEEE Photon. Technol. Lett., vol. 8, 1996.

L. Eldada and J. T. Yardly, "Integration of polymeric micro-optical elements with planar waveguiding circuits", in Proc. SPIE, vol. 3289, 1998, pp. 122-122.

R. T. Chen, L. Lin, C. Choi, Y. Liu, B. Bihari, L. Wu, R. Wickman, B. Picor, M. K. Hibbs-Brenner, J. Bristow and Y. S. Liu, "Fully embedded board-level guided-wave optoelectronic interconnects", Proc. IEEE, vol. 88, pp. 780-793, June 2000.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.