Abstract

Accelerated-aging studies of chirped Bragg gratings written in deuterium-loaded germano-silicate fibers were carried out using isothermal and continuous isochronal anneal methods. The master aging curve obtained from the isothermal decay is explained using the Arrhenius-rate-model-based equation. An empirical polynomial function was used to fit the continuous isochronal anneal data. The estimated attempt frequency (nu) values from the two anneal methods were found to agree well within error. Further, the model-based calculations were found to predict postanneal long-term behavior of the gratings extremely well. Implications of the two anneal methods to accurately predict the thermal stability of chirped fiber Bragg gratings are discussed in light of rapid and reliable qualification of different types of gratings written in different fibers.

© 2004 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription