Abstract

Low-pressure chemical-vapor deposition (LPCVD) thin-film Si3N4 waveguides have been fabricated on Si substrate within a complementary metal-oxide-semiconductor (CMOS) fabrication pilot line. Three kinds of geometries (channel, rib, and strip-loaded) have been simulated, fabricated, and optically characterized in order to optimize waveguide performances. The number and optical confinement factors of guided optical modes have been simulated, taking into account sidewall effects caused by the etching processes, which have been studied by scanning electron microscopy. Optical guided modes have been observed with a mode analyzer and compared with simulation expectations to confirm the process parameters. Propagation loss measurements at 780 and 632.8 nm have been performed by both using the cutback technique and measuring the drop of intensity of the top scattered light along the length of the waveguide. Loss coefficients of approximately 0.1 dB/cm have been obtained for channel waveguides. These data are very promising in view of the development of Si-integrated photonics.

© 2004 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription