Abstract

The pole-zero diagram is a tool that has been widely employed in digital and electronic filter design. It greatly facilitates filter design by producing a simple and direct visualization of parametrical behaviors and general spectral characteristics. In this paper, we propose new methods of applying pole-zero diagrams to photonic filter design, aimed at tailoring spectral characteristics. In particular, we demonstrate the effectiveness of this method in designing ring resonator-based filters for application to optical wavelength interleavers and deinterleavers. We show that there exist close relations between the pole-zero diagram of an optical filter and its wavelength response, and derive pole-zero diagrams for filters with various ring resonator configurations. Further, we propose a novel graphical technique using pole-zero diagrams for optimizing filter performance. As a practical example to demonstrate the effectiveness of the pole-zero approach, we present a new wavelength interleaver design with low crosstalk. This design was realized by superimposing the pole-zero diagrams of parallel and series-coupled ring resonator arrays.

© 2004 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription