Abstract

A 40-GHz mode-locked fiber-ring laser based on an optically controlled modulator is presented and analyzed in detail. The modulator is a monolithic InGaAsP-InP Mach-Zehnder interferometer with integrated semiconductor optical amplifiers, which allows optical pulse generation synchronized to an external optical clock pulse stream. The laser generates nearly transform-limited Gaussian pulses of 2.5-ps width and up to 9-mW mean output power with less than 130 fs of timing jitter, and it is wavelength tunable over more than 30 nm. The relationship between key laser parameters and the output pulse characteristics is analyzed experimentally and numerically. An improved cavity design permits the generation of shorter pulses of 1.0-ps width.

© 2004 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription