Abstract

This paper describes the four-wave mixing (FWM) interaction of several Raman pumps and its effect on optical-signal-to-noise ratio and Raman gain. In this paper, the modeling of the combined Raman and FWM effects is explained and is used for the impairment investigation. We compare the relative importance of amplifier parameters. In particular, the paper shows how wide pumps increase the regions of forbidden zero-dispersion wavelength and increase the penalty regions in the signal band. Fiber parameters beyond zero-dispersion wavelength (dispersion slope, effective area, and Rayleigh scattering) are also investigated but show little impact. Finally, the paper considers nonuniform spans and shows that the use of short cables makes pump-pump FWM a likely problem.

© 2004 IEEE

PDF Article

References

  • View by:
  • |

  1. H. Kidorf, K. Rottwitt, M. Nissov, M. Ma and E. Rabarijaona, "Pump interactions in a 100-nm bandwidth Raman amplifier", IEEE Photon. Technol. Lett., vol. 11, pp. 530-532, May 1999.
  2. R. E. Neuhauser, P. M. Krummrich, H. Bock and C. Glingener, "Impact of nonlinear pump interactions on broadband distributed Raman amplification", in Proc. Optical Fiber Communications Conf. , 2001, MA4.
  3. P. Steinvurzel, J. Bromage, J.-C. Bouteiller, C. Corrales, H. Huang, S. Namiki and B. J. Eggleton, "Wavelength-tunable semiconductor pump diode for reconfigurable Raman amplification", Appl. Opt., vol. 42, no. 9, p. 1692, Mar. 2003.
  4. L. Leng, J.-C. Bouteiller, B. Zhu, P. Kristensen, L. Grüner-Nielsen, S. Stulz and L. E. Nelson, "Experimental investigation of the impact of NZDF zero-dispersion wavelength on broadband transmission in Raman-enhanced systems", in Proc. Optical Fiber Communications Conf. , 2003, WE4.
  5. M. Gertsvolf, B. Pourbahri, H. J. Harvey, A. M. Robinson, B. S. Luo and A. Parent, "Enabling C and L band ULH transmission by mitigating Raman pump FWM", in Proc. Eur. Conf. Optical Communications, 2003, 3.23.
  6. N. Shibata, R. P. Braun and R. G. Waarts, "Phase-mismatch dependence of efficiency of wave generation through four-wave mixing in a single-mode fiber", IEEE J. Quantum Electron., vol. 23, pp. 1205-1210, July 1987 .
  7. K. Inoue, "Four-wave mixing in an optical fiber in the zero-dispersion wavelength region", J. Lightwave Technol., vol. 10, pp. 1553-1561, Nov. 1992.
  8. W. Wu, P. Yeh and S. Chi, "Phase conjugation by four-wave mixing in single-mode fibers", IEEE Photon. Technol. Lett., vol. 6, pp. 1448 -1450, Dec. 1994.
  9. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. San Diego, CA: Academic, 1995.
  10. K. Rottwitt and A. J. Stentz, "Raman amplification in lightwave commnuications systems," in Optical Fiber Telecommunications, IVA, I. P. Kaminov, and T. Lee, Eds. San Diego, CA: Academic, 2002, ch. 5.
  11. M.-C. Ho, C.-J. Chen, W. S. Wong and H. K. Lee, "Parametric interactions between pumps and signals in a co-pumped Raman amplifier", in Proc. Conf. Lasers Electro-Optics, 2002, CThJ6.
  12. J. Bromage, P. J. Winzer, L. E. Nelson and C. J. McKinstrie, "Raman-enhanced pump-signal four-wave mixing in bidirectionally-pumped Raman amplifiers", in Proc. Optical Amplifiers Their Applications, 2002, OWA5.
  13. H. Sugahara, K. Fukuchi, A. Tanaka, Y. Inada and T. Ono, "6, 050 km transmission of 32 × 42.7 Gb/s DWDM signals using Raman-amplified quadruple-hybrid span configuration", presented at the Optical Fiber Communications Conf., Anaheim, CA, Postdeadline Paper FC6, Mar. 2002.
  14. D. F. Grosz, A. Küng, D. N. Maywar, L. Altman, M. Movassaghi, H. C. Lin, D. A. Fishman and T. H. Wood, "Demonstration of all-Raman ultra-wide-band transmission of 1.28 Tb/s (128 × 10Gb/s) over 4000 km of NZ-DSF with large ber margins", presented at the Eur. Conf. Optical Communications, Amsterdam, The Netherlands, Postdeadline Paper PD.B.1.3, Sept. 2001.
  15. B. Zhu, L. Leng, L. E. Nelson, L. Grüner-Nielsen, Y. Qian, J. Bromage, S. Stulz, S. Kado, Y. Emori, S. Namiki, P. Gaarde, A. Judy, B. Pálsdóttir and R. L. LingleJr, "3.2 Tb/s (80 × 42.7 Gb/s) transmission over 20 × 100 km of nonzero dispersion fiber with simultaneous C+L -band dispersion compensation", presented at the Optical Fiber Communications Conf., Anaheim, CA, Postdeadline Paper FC8, Mar. 2002.
  16. F. Boubal, E. Brandon, L. Buet, S. Chernikov, V. Havard, C. Heerdt, A. Hugbart, W. Idler, L. Labrunie, P. Le Roux, S. A. E. Lewis, A. Pham, L. Piriou, R. Uhel and J.-P. Blondel, "4.16 Tbit/S (104 × 40 Gbit/s) unrepeatered transmission over 135 km in S+C+L bands with 104 nm total bandwidth", in Proc. Eur. Conf. Optical Communications, 2001,Mo.F.3.4.
  17. E. Brinkmeyer, "Analysis of the backscattering method for single-mode optical fibers", J. Opt. Soc. Amer., vol. 70, pp. 1010-1012, 1980.
  18. A. H. Hartog and M. P. Gold, "On the theory of backscattering in single-mode optical fibers", J. Lightwave Technol., vol. LT-2, pp. 76-82, Apr. 1984.
  19. J. B. Schlager, S. E. Mechels and D. L. Franzen, "Zero-dispersion wavelength uniformity and four-wave mixing in optical fiber", in IEEE Lasers Electro-Optics Soc. Annu. Meeting, vol. 1, Nov. 1996, pp. 166-167.
  20. J. Gripp and L. Mollenauer, "The dispersion-OTDR", in Proc. Optical Fiber Communications Conf., 1999, ThS4.

J. Lightwave Technol. (1)

K. Inoue, "Four-wave mixing in an optical fiber in the zero-dispersion wavelength region", J. Lightwave Technol., vol. 10, pp. 1553-1561, Nov. 1992.

Other (19)

W. Wu, P. Yeh and S. Chi, "Phase conjugation by four-wave mixing in single-mode fibers", IEEE Photon. Technol. Lett., vol. 6, pp. 1448 -1450, Dec. 1994.

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. San Diego, CA: Academic, 1995.

K. Rottwitt and A. J. Stentz, "Raman amplification in lightwave commnuications systems," in Optical Fiber Telecommunications, IVA, I. P. Kaminov, and T. Lee, Eds. San Diego, CA: Academic, 2002, ch. 5.

M.-C. Ho, C.-J. Chen, W. S. Wong and H. K. Lee, "Parametric interactions between pumps and signals in a co-pumped Raman amplifier", in Proc. Conf. Lasers Electro-Optics, 2002, CThJ6.

J. Bromage, P. J. Winzer, L. E. Nelson and C. J. McKinstrie, "Raman-enhanced pump-signal four-wave mixing in bidirectionally-pumped Raman amplifiers", in Proc. Optical Amplifiers Their Applications, 2002, OWA5.

H. Sugahara, K. Fukuchi, A. Tanaka, Y. Inada and T. Ono, "6, 050 km transmission of 32 × 42.7 Gb/s DWDM signals using Raman-amplified quadruple-hybrid span configuration", presented at the Optical Fiber Communications Conf., Anaheim, CA, Postdeadline Paper FC6, Mar. 2002.

D. F. Grosz, A. Küng, D. N. Maywar, L. Altman, M. Movassaghi, H. C. Lin, D. A. Fishman and T. H. Wood, "Demonstration of all-Raman ultra-wide-band transmission of 1.28 Tb/s (128 × 10Gb/s) over 4000 km of NZ-DSF with large ber margins", presented at the Eur. Conf. Optical Communications, Amsterdam, The Netherlands, Postdeadline Paper PD.B.1.3, Sept. 2001.

B. Zhu, L. Leng, L. E. Nelson, L. Grüner-Nielsen, Y. Qian, J. Bromage, S. Stulz, S. Kado, Y. Emori, S. Namiki, P. Gaarde, A. Judy, B. Pálsdóttir and R. L. LingleJr, "3.2 Tb/s (80 × 42.7 Gb/s) transmission over 20 × 100 km of nonzero dispersion fiber with simultaneous C+L -band dispersion compensation", presented at the Optical Fiber Communications Conf., Anaheim, CA, Postdeadline Paper FC8, Mar. 2002.

F. Boubal, E. Brandon, L. Buet, S. Chernikov, V. Havard, C. Heerdt, A. Hugbart, W. Idler, L. Labrunie, P. Le Roux, S. A. E. Lewis, A. Pham, L. Piriou, R. Uhel and J.-P. Blondel, "4.16 Tbit/S (104 × 40 Gbit/s) unrepeatered transmission over 135 km in S+C+L bands with 104 nm total bandwidth", in Proc. Eur. Conf. Optical Communications, 2001,Mo.F.3.4.

E. Brinkmeyer, "Analysis of the backscattering method for single-mode optical fibers", J. Opt. Soc. Amer., vol. 70, pp. 1010-1012, 1980.

A. H. Hartog and M. P. Gold, "On the theory of backscattering in single-mode optical fibers", J. Lightwave Technol., vol. LT-2, pp. 76-82, Apr. 1984.

J. B. Schlager, S. E. Mechels and D. L. Franzen, "Zero-dispersion wavelength uniformity and four-wave mixing in optical fiber", in IEEE Lasers Electro-Optics Soc. Annu. Meeting, vol. 1, Nov. 1996, pp. 166-167.

J. Gripp and L. Mollenauer, "The dispersion-OTDR", in Proc. Optical Fiber Communications Conf., 1999, ThS4.

H. Kidorf, K. Rottwitt, M. Nissov, M. Ma and E. Rabarijaona, "Pump interactions in a 100-nm bandwidth Raman amplifier", IEEE Photon. Technol. Lett., vol. 11, pp. 530-532, May 1999.

R. E. Neuhauser, P. M. Krummrich, H. Bock and C. Glingener, "Impact of nonlinear pump interactions on broadband distributed Raman amplification", in Proc. Optical Fiber Communications Conf. , 2001, MA4.

P. Steinvurzel, J. Bromage, J.-C. Bouteiller, C. Corrales, H. Huang, S. Namiki and B. J. Eggleton, "Wavelength-tunable semiconductor pump diode for reconfigurable Raman amplification", Appl. Opt., vol. 42, no. 9, p. 1692, Mar. 2003.

L. Leng, J.-C. Bouteiller, B. Zhu, P. Kristensen, L. Grüner-Nielsen, S. Stulz and L. E. Nelson, "Experimental investigation of the impact of NZDF zero-dispersion wavelength on broadband transmission in Raman-enhanced systems", in Proc. Optical Fiber Communications Conf. , 2003, WE4.

M. Gertsvolf, B. Pourbahri, H. J. Harvey, A. M. Robinson, B. S. Luo and A. Parent, "Enabling C and L band ULH transmission by mitigating Raman pump FWM", in Proc. Eur. Conf. Optical Communications, 2003, 3.23.

N. Shibata, R. P. Braun and R. G. Waarts, "Phase-mismatch dependence of efficiency of wave generation through four-wave mixing in a single-mode fiber", IEEE J. Quantum Electron., vol. 23, pp. 1205-1210, July 1987 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.