Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 22,
  • Issue 2,
  • pp. 684-
  • (2004)

Time-Domain Beam Propagation Method for Nonlinear Optical Propagation Analysis and Its Application to Photonic Crystal Circuits

Not Accessible

Your library or personal account may give you access

Abstract

A time-domain beam propagation method (BPM) based on a finite-element scheme is newly formulated for nonlinear optical propagation analysis. In order to obtain steady-state solutions, a way of continuous-wave (CW) excitation is also described. The validity of this method is verified by numerical examples: self-focusing guiding phenomena and nonlinear gratings. Furthermore, this approach is also applied to characterizing nonlinear photonic crystal circuits. Specifically, a grating structure designed to modify the characteristics of light propagating within a photonic crystal waveguide and a stub-like structure including nonlinear rods are proposed, and the potential for use as optical limiting and switching devices is investigated.

© 2004 IEEE

PDF Article
More Like This
Application of modified Padé approximant operators to time-domain beam propagation methods

Khai Q. Le, Trevor Benson, and Peter Bienstman
J. Opt. Soc. Am. B 26(12) 2285-2289 (2009)

Efficient smoothed finite element time domain analysis for photonic devices

Khaled S. R. Atia, A. M. Heikal, and S. S. A. Obayya
Opt. Express 23(17) 22199-22213 (2015)

Analysis of photonic crystal waveguide gratings with coupled-mode theory and a finite-element method

Takeshi Fujisawa and Masanori Koshiba
Appl. Opt. 45(17) 4114-4121 (2006)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.