Abstract

For many fiber applications, the Brillouin gain spectrum (BGS) contains important information including the Brillouin frequency shift, the Brillouin spontaneous linewidth, and the Brillouin gain coefficient. This paper is the first, to the best of our knowledge, to present an accurate numerical simulation of the BGS in single-mode fibers. The simulated and measured BGS were in good agreement. Through repeated numerical simulations, we revealed a tendency of the peak Brillouin gain coefficient that determines the stimulated Brillouin scattering threshold.

© 2004 IEEE

PDF Article

References

  • View by:
  • |

  1. A. R. Chraplyvy, "Limitation on lightwave communication imposed by optical-fiber nonlinearities", J. Lightwave Technol., vol. 8, pp. 1548-1557, 1990.
  2. S. Watanabe, S. Takeda and T. Chikama, "Interband wavelength conversion of 320 Gb/s (32 × 10 Gb/s) WDM signal using a polarization-insensitive fiber four-wave mixer", in Proc. ECOC'98, vol. 1, Madrid, 1998, pp. 85-86.
  3. J. Hansryd and P. A. Andrekson, "Broadband CW pumped fiber optical parametric amplifier with 49 dB gain and wavelength conversion efficiency", in Tech. Dig. OFC 2000, Baltimore, .
  4. S. K. Korotky, P. B. Hansen, L. Eskildsen and J. J. Veselka, "Efficient phase modulation scheme for suppressing stimulated Brillouin scattering", in Tech. Dig. IOOC'95 , vol. 2, Hong Kong, 1995,WD2-1,. pp. 110-111.
  5. K. Shiraki, M. Ohashi and M. Tateda, "SBS threshold of a fiber with a Brillouin frequency shift distribution", J. Lightwave Technol., vol. 14, pp. 50-57, 1996.
  6. J. Hansryd, F. Dross, M. Westlund, P. A. Andrekson and S. N. Knudsen, "Increase of the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution", J. Lightwave Technol., vol. 19, pp. 1691-1697, 2001.
  7. T. Horiguchi, T. Kurashima and M. Tateda, "A technique to measure distributed strain in optical fibers", IEEE Photon. Technol. Lett., vol. 2, pp. 352-354, May 1990.
  8. H. Ohno, H. Naruse, N. Yasue, Y. Miyajima, H. Uchiyama, Y. Sakairi and Z. X. Li, "Development of highly stable BOTDR strain sensor employing microwave heterodyne detection and tunable electric oscillator", in Proc. SPIE, vol. 4596, Nov. 2001, pp. 74- 85.
  9. P. J. Thomas, N. L. Rowell, H. M. van Driel and G. I. Stegeman, "Normal acoustic modes and Brillouin scattering in single-mode optical fibers", Phys. Rev. B, vol. 19, pp. 4986-4998, May 1979.
  10. N. Shibata, K. Okamoto and Y. Azuma, "Longitudinal acoustic modes and Brillouin-gain spectra for GeO2 -doped-core single-mode fibers", J. Opt. Soc. Amer. B, vol. 6, pp. 1167-1174, June 1989.
  11. M. Nikles, L. Thevenaz and P. A. Robert, "Brillouin gain spectrum characterization in single-mode optical fibers", J. Lightwave Technol., vol. 15, pp. 1842-1851, Oct. 1997.
  12. A. Yeniary, J. Toulouse, J.-M. P. Delavaux, C. McIntosh, G. C. Wilson and L. E. Eng, "Guided longitudinal acoustic modes in spontaneous and stimulated Brillouin scattering in optical fibers", in Tech. Dig. OFC 2000, Baltimore, MD,ThR3.
  13. N. Lagakos, J. A. Bucaro and R. Hughes, "Acoustic sensitivity predictions of single-mode optical fibers using Brillouin scattering", Appl. Opt. , vol. 19, pp. 3668-3670, Nov. 1980.
  14. K. Shiraki and M. Ohashi, "Sound velocity measurement based on guided acoustic-wave Brillouin scattering", IEEE Photon. Technol. Lett., vol. 4, pp. 1177-1180, Oct. 1992.
  15. C. K. Jen, A. Safaai-Jazi and G. W. Farnell, "Leaky modes in weakly guiding fiber acoustic waveguide", IEEE Trans. Ultrason. Ferroelectr. Freq. Contr., vol. UFFC-33, pp. 634-643, Nov. 1986.
  16. E. A. J. Marcatili and R. A. Schmeltzer, "Hollow metallic and dielectric waveguides for long distance optical transmission and lasers", Bell Syst. Tech. J., vol. 43, pp. 1783-1809, July 1964.
  17. D. Marcuse, Theory of Dielectric Optical Waveguides, 2nd ed. New York: Academic, 1991.
  18. R. A. Waldron, "Some problems in the theory of guided microsonic waves", IEEE Trans. Microwave Theory Tech., vol. MTT-17, pp. 893-904, Nov. 1969.
  19. B. A. Auld, Acoustic Fields and Waves in Solids, New York: Wiley, 1973,vol. II.

J. Lightwave Technol. (4)

M. Nikles, L. Thevenaz and P. A. Robert, "Brillouin gain spectrum characterization in single-mode optical fibers", J. Lightwave Technol., vol. 15, pp. 1842-1851, Oct. 1997.

A. R. Chraplyvy, "Limitation on lightwave communication imposed by optical-fiber nonlinearities", J. Lightwave Technol., vol. 8, pp. 1548-1557, 1990.

K. Shiraki, M. Ohashi and M. Tateda, "SBS threshold of a fiber with a Brillouin frequency shift distribution", J. Lightwave Technol., vol. 14, pp. 50-57, 1996.

J. Hansryd, F. Dross, M. Westlund, P. A. Andrekson and S. N. Knudsen, "Increase of the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution", J. Lightwave Technol., vol. 19, pp. 1691-1697, 2001.

Other (15)

S. Watanabe, S. Takeda and T. Chikama, "Interband wavelength conversion of 320 Gb/s (32 × 10 Gb/s) WDM signal using a polarization-insensitive fiber four-wave mixer", in Proc. ECOC'98, vol. 1, Madrid, 1998, pp. 85-86.

J. Hansryd and P. A. Andrekson, "Broadband CW pumped fiber optical parametric amplifier with 49 dB gain and wavelength conversion efficiency", in Tech. Dig. OFC 2000, Baltimore, .

S. K. Korotky, P. B. Hansen, L. Eskildsen and J. J. Veselka, "Efficient phase modulation scheme for suppressing stimulated Brillouin scattering", in Tech. Dig. IOOC'95 , vol. 2, Hong Kong, 1995,WD2-1,. pp. 110-111.

T. Horiguchi, T. Kurashima and M. Tateda, "A technique to measure distributed strain in optical fibers", IEEE Photon. Technol. Lett., vol. 2, pp. 352-354, May 1990.

H. Ohno, H. Naruse, N. Yasue, Y. Miyajima, H. Uchiyama, Y. Sakairi and Z. X. Li, "Development of highly stable BOTDR strain sensor employing microwave heterodyne detection and tunable electric oscillator", in Proc. SPIE, vol. 4596, Nov. 2001, pp. 74- 85.

P. J. Thomas, N. L. Rowell, H. M. van Driel and G. I. Stegeman, "Normal acoustic modes and Brillouin scattering in single-mode optical fibers", Phys. Rev. B, vol. 19, pp. 4986-4998, May 1979.

N. Shibata, K. Okamoto and Y. Azuma, "Longitudinal acoustic modes and Brillouin-gain spectra for GeO2 -doped-core single-mode fibers", J. Opt. Soc. Amer. B, vol. 6, pp. 1167-1174, June 1989.

A. Yeniary, J. Toulouse, J.-M. P. Delavaux, C. McIntosh, G. C. Wilson and L. E. Eng, "Guided longitudinal acoustic modes in spontaneous and stimulated Brillouin scattering in optical fibers", in Tech. Dig. OFC 2000, Baltimore, MD,ThR3.

N. Lagakos, J. A. Bucaro and R. Hughes, "Acoustic sensitivity predictions of single-mode optical fibers using Brillouin scattering", Appl. Opt. , vol. 19, pp. 3668-3670, Nov. 1980.

K. Shiraki and M. Ohashi, "Sound velocity measurement based on guided acoustic-wave Brillouin scattering", IEEE Photon. Technol. Lett., vol. 4, pp. 1177-1180, Oct. 1992.

C. K. Jen, A. Safaai-Jazi and G. W. Farnell, "Leaky modes in weakly guiding fiber acoustic waveguide", IEEE Trans. Ultrason. Ferroelectr. Freq. Contr., vol. UFFC-33, pp. 634-643, Nov. 1986.

E. A. J. Marcatili and R. A. Schmeltzer, "Hollow metallic and dielectric waveguides for long distance optical transmission and lasers", Bell Syst. Tech. J., vol. 43, pp. 1783-1809, July 1964.

D. Marcuse, Theory of Dielectric Optical Waveguides, 2nd ed. New York: Academic, 1991.

R. A. Waldron, "Some problems in the theory of guided microsonic waves", IEEE Trans. Microwave Theory Tech., vol. MTT-17, pp. 893-904, Nov. 1969.

B. A. Auld, Acoustic Fields and Waves in Solids, New York: Wiley, 1973,vol. II.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.