Abstract

It is shown that long-period gratings (LPGs) can be written in a pure-silica photonic crystal fiber without physical deformation by using the glass structure change. LPGs with different grating periods are made by the glass structure change induced by arc discharge. We find that the resonance wavelengths decrease with increasing the grating period in contrast with LPGs fabricated in conventional fibers. The second-order core mode begins to be supported in the long-wavelength region, and two resonance peaks appear there. This is due to a large increase of the index difference between the pure-silica core and the holey cladding against wavelength.

© 2004 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription