Abstract

Highly efficient resonantly enhanced modulators on X-cut LiNbO3 are investigated through the use of numerical optimization. We describe the optimization technique and present a new design trend relating the link-gain efficiency of optical radio systems that employ external modulation to the choice of modulator electrode geometric dimensions, especially the electrode gap. Using this optimization technique, resonant-type modulators with link gain enhancement up to 6 dB are achievable while maintaining excellent return loss at a resonant frequency of 1.8 GHz. The characteristics of both the optical waveguide and the coplanar electrode are characterized by finite-element simulation.

© 2004 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription