Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 22,
  • Issue 2,
  • pp. 409-
  • (2004)

Noise Characteristics of Fiber Optical Parametric Amplifiers

Not Accessible

Your library or personal account may give you access

Abstract

We derive an analytical theory for the noise figure of an undepleted and lossless fiber optical parametric amplifier (FOPA). Both the signal and the wavelength converted idler are investigated. Our theory is applicable for both an ideal pump power source, as well as a noisy one. We find that a noisy pump source can severely degrade the performance at high gain due to the stochastic gain-variations the signal and idler will experience. The theory is compared with Monte Carlo simulations of the FOPA and an excellent agreement is obtained. Simulations in the gain-depleted region show the possibility to reach below quantum-limited, phase-insensitive amplification for single channel transmission.

© 2004 IEEE

PDF Article
More Like This
Full characterization of the signal and idler noise figure spectra in single-pumped fiber optical parametric amplifiers

Zhi Tong, Adonis Bogris, Magnus Karlsson, and Peter A. Andrekson
Opt. Express 18(3) 2884-2893 (2010)

Gain-saturated spectral characteristics in a Raman-assisted fiber optical parametric amplifier

Xiaojie Guo, Xuelei Fu, and Chester Shu
Opt. Lett. 39(12) 3658-3661 (2014)

Noise-figure limit of fiber-optical parametric amplifiers and wavelength converters: experimental investigation

Renyong Tang, Paul L. Voss, Jacob Lasri, Preetpaul Devgan, and Prem Kumar
Opt. Lett. 29(20) 2372-2374 (2004)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved