Abstract

This paper presents the fabrication and characteristics of high-performance 850-nm InGaAsP-InGaP strain-compensated multiple-quantum-well (MQW) vertical-cavity surface-emitting lasers (VCSELs). The InGaAsP-InGaP MQW's composition was optimized through theoretical calculations, and the growth condition was optimized using photoluminescence. These VCSELs exhibit superior performance with characteristics threshold currents ~0.4 mA and slope efficiencies ~0.6 mW/mA. The threshold current change with temperature is less than 0.2 mA, and the slope efficiency drops less than ~30% when the substrate temperature is raised from room temperature to 85 °C. A high modulation bandwidth of 14.5 GHz and a modulation current efficiency factor of 11.6 GHz/(mA)^1/2 are demonstrated. The authors have accumulated life test data up to 1000 h at 70 °C/8 mA .

© 2004 IEEE

PDF Article

References

  • View by:
  • |

  1. J. A. Tatum, A. Clark, J. K. Guenter, R. A. Hawthorne, and R. H. Johnson, "Commercialization of Honeywell's VCSEL technology," in Proc. Vertical-Cavity Surface-Emitting Lasers IV, SPIE, K. D. Choquette and C. Lei, Eds., pp. 2-13.
  2. F. H. Peters and M. H. MacDougal, "High-speed high-temperature operation of vertical-cavity surface-emitting lasers", IEEE Photon. Technol. Lett., vol. 13, pp. 645-647, July 2001.
  3. F. H. Peters, D. J. Welch, V. Jayaraman, M. H. MacDougal, J. D. Tagle, T. A. Goodwin, J. E. Schramm, T. D. Lowes, S. P. Kilcoyne, K. R. Nary, J. S. Bergey and W. Carpenter, "10 Gb/s VCSEL-based data links", Photonics West, San Jose, CA, Tech. Rep. OE 3946-26, 2000.
  4. C. W. Wilmsen, H. Temkin, and L. A. Coldren, Eds. Vertical-Cavity Surface-Emitting Lasers: Design, Fabrication, Characterization,and Applications, Cambridge: U.K.: Cambridge Univ. Press, 1999.
  5. K. L. Lear, M. Ochiai, V. M. Hietala, H. Q. Hou, B. E. Hammons, J. J. Banas and J. A. Nevers, "High-speed vertical cavity surface emitting lasers", in Dig. IEEE/LEOS Summer Topical Meetings , Aug. 1997, pp. 53-54.
  6. J. A. Lehman, R. A. Morgan, M. K. Hibbs-Brenner and D. Carlson, "High-frequency modulation characteristics of hybrid dielectric/AlGaAs mirror singlemode VCSELs", Electron. Lett., vol. 31, pp. 1251-1252, 1995.
  7. K. L. Lear, A. Mar, K. D. Choquette, S. P. Kilcoyne, R. P. Schneider Jr. and K. M. Geib, "High-frequency modulation of oxide confined vertical cavity surface emitting lasers", Electron. Lett., vol. 32, pp. 457-458, 1996.
  8. L. J. Mawst, S. Rusli, A. Al-Muhanna and J. K. Wade, "Short-wavelength (0.7 µm < lambda < 0.78 µm) high-power InGaAsP-active diode lasers", IEEE J. Select. Topics Quantum Electron., vol. 5, pp. 785-791, May-June 1999.
  9. N. Tansu, D. Zhou and L. J. Mawst, "Low temperature sensitive, compressively-strained InGaAsP active (lambda = 0.78-0.85 µm) region diode lasers", IEEE Photon. Technol. Lett., vol. 12, pp. 603-605, June 2000.
  10. T. E. Sale, C. Amamo, Y. Ohiso and T. Kurokawa, "Using strained lasers (AlGa) InAsP system materials to improve the performance of 850 nm surface-and edge-emitting lasers", Appl. Phys. Lett., vol. 71, pp. 1002-1004, 1997.
  11. N. Tansu and L. J. Mawst, "Compressively-strained InGaAsP-active (\lambda=0.85 µm) VCSELs", in IEEE Lasers Electro-Optics Society 2000 Annu. Meeting (LEOS 2000), vol. 2, Nov. 2000, pp. 724-725.
  12. H. C. Kuo, Y. S. Chang, F. I. Lai and T. H. Hsueh, "High speed modulation of 850 nm InGaAsP/InGaP strain-compensated VCSELs", Electron. Lett., vol. 39, pp. 1051-10 523, 2003.
  13. S. L. Chuang, "Efficient band-structure calculation of strained quantum-wells", Phys. Rev. B, vol. 43, pp. 9649 -9661, 1991.
  14. in"Proc. Production High-Speed Oxide Confined VCSEL Arrays for Datacom Application, SPIE", vol. 4649, 2002, p. 142.
  15. [Online]. Available: http://www.ieee802.org/.
  16. B. J. Thibeault, K. Bertilsson and E. R. Hegblom, "High-speed characteristics of low-optical loss oxide-aperture vertical-cavity laser", IEEE Photon. Technol. Lett., vol. 9, pp. 11-13, Jan. 1997.
  17. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Ciurcuits , New York: Wiley, 1995, pp. 201-204.
  18. T. R. Chen, B. Zhao, L. Eng and Y. H. Zhuang, "Very high modulation efficiency of ultralow threshold current single quantum well InGaAs lasers", Electron. Lett., vol. 29, pp. 1525-1526, 1993.
  19. S. Eitel, S. Hunziker and D. Vez, "Multimode VCSEL's for high bit-rate and transparent low-cost fiber-optic links", in Proc. SPIE, vol. 4649, 2002, p. 183.

Other (19)

J. A. Tatum, A. Clark, J. K. Guenter, R. A. Hawthorne, and R. H. Johnson, "Commercialization of Honeywell's VCSEL technology," in Proc. Vertical-Cavity Surface-Emitting Lasers IV, SPIE, K. D. Choquette and C. Lei, Eds., pp. 2-13.

F. H. Peters and M. H. MacDougal, "High-speed high-temperature operation of vertical-cavity surface-emitting lasers", IEEE Photon. Technol. Lett., vol. 13, pp. 645-647, July 2001.

F. H. Peters, D. J. Welch, V. Jayaraman, M. H. MacDougal, J. D. Tagle, T. A. Goodwin, J. E. Schramm, T. D. Lowes, S. P. Kilcoyne, K. R. Nary, J. S. Bergey and W. Carpenter, "10 Gb/s VCSEL-based data links", Photonics West, San Jose, CA, Tech. Rep. OE 3946-26, 2000.

C. W. Wilmsen, H. Temkin, and L. A. Coldren, Eds. Vertical-Cavity Surface-Emitting Lasers: Design, Fabrication, Characterization,and Applications, Cambridge: U.K.: Cambridge Univ. Press, 1999.

K. L. Lear, M. Ochiai, V. M. Hietala, H. Q. Hou, B. E. Hammons, J. J. Banas and J. A. Nevers, "High-speed vertical cavity surface emitting lasers", in Dig. IEEE/LEOS Summer Topical Meetings , Aug. 1997, pp. 53-54.

J. A. Lehman, R. A. Morgan, M. K. Hibbs-Brenner and D. Carlson, "High-frequency modulation characteristics of hybrid dielectric/AlGaAs mirror singlemode VCSELs", Electron. Lett., vol. 31, pp. 1251-1252, 1995.

K. L. Lear, A. Mar, K. D. Choquette, S. P. Kilcoyne, R. P. Schneider Jr. and K. M. Geib, "High-frequency modulation of oxide confined vertical cavity surface emitting lasers", Electron. Lett., vol. 32, pp. 457-458, 1996.

L. J. Mawst, S. Rusli, A. Al-Muhanna and J. K. Wade, "Short-wavelength (0.7 µm < lambda < 0.78 µm) high-power InGaAsP-active diode lasers", IEEE J. Select. Topics Quantum Electron., vol. 5, pp. 785-791, May-June 1999.

N. Tansu, D. Zhou and L. J. Mawst, "Low temperature sensitive, compressively-strained InGaAsP active (lambda = 0.78-0.85 µm) region diode lasers", IEEE Photon. Technol. Lett., vol. 12, pp. 603-605, June 2000.

T. E. Sale, C. Amamo, Y. Ohiso and T. Kurokawa, "Using strained lasers (AlGa) InAsP system materials to improve the performance of 850 nm surface-and edge-emitting lasers", Appl. Phys. Lett., vol. 71, pp. 1002-1004, 1997.

N. Tansu and L. J. Mawst, "Compressively-strained InGaAsP-active (\lambda=0.85 µm) VCSELs", in IEEE Lasers Electro-Optics Society 2000 Annu. Meeting (LEOS 2000), vol. 2, Nov. 2000, pp. 724-725.

H. C. Kuo, Y. S. Chang, F. I. Lai and T. H. Hsueh, "High speed modulation of 850 nm InGaAsP/InGaP strain-compensated VCSELs", Electron. Lett., vol. 39, pp. 1051-10 523, 2003.

S. L. Chuang, "Efficient band-structure calculation of strained quantum-wells", Phys. Rev. B, vol. 43, pp. 9649 -9661, 1991.

in"Proc. Production High-Speed Oxide Confined VCSEL Arrays for Datacom Application, SPIE", vol. 4649, 2002, p. 142.

[Online]. Available: http://www.ieee802.org/.

B. J. Thibeault, K. Bertilsson and E. R. Hegblom, "High-speed characteristics of low-optical loss oxide-aperture vertical-cavity laser", IEEE Photon. Technol. Lett., vol. 9, pp. 11-13, Jan. 1997.

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Ciurcuits , New York: Wiley, 1995, pp. 201-204.

T. R. Chen, B. Zhao, L. Eng and Y. H. Zhuang, "Very high modulation efficiency of ultralow threshold current single quantum well InGaAs lasers", Electron. Lett., vol. 29, pp. 1525-1526, 1993.

S. Eitel, S. Hunziker and D. Vez, "Multimode VCSEL's for high bit-rate and transparent low-cost fiber-optic links", in Proc. SPIE, vol. 4649, 2002, p. 183.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.