Abstract

This paper reports on a novel fiber design that has an inherently flattened effective Raman gain spectrum. Simulations show that gain-flattened broad-band Raman amplification, using a single pump, can be achieved in any wavelength band by suitably choosing the fiber parameters and the pump wavelength. The fiber also has a high negative dispersion coefficient - (380-515) ps/km·nm over the operating range of wavelengths - and the shape of the dispersion curve is such that the total link dispersion can be not only compensated but also flattened. Hence, the designed fiber can serve as a lossless, broad-band, dispersion-flattening, and dispersion-compensating module for the S band, wherein lossless operation is achieved using inherently gain-flattened single-pump Raman amplification. The performance characteristics of such a module was modeled taking into account wavelength-dependent splice loss as well as background loss, and it has been shown through simulations that lossless operation with ± 0.2-dB gain ripple is achievable over (1480-1511) nm using a single pump. Moreover, dispersion compensation for five spans of transmission in a 10-Gb/s system, over this 32-nm bandwidth in the S band, should be attainable using the proposed design.

© 2004 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription