Abstract

This paper describes a continuously variable and independently addressable channelized dispersion compensator. The optical system is a free-space grating-based system used in a four-pass configuration to ensure flat passbands. The variable dispersion is produced by an array of thermally adaptable curvature micromechanical mirrors. A per-channel variable dispersion greater than +/-400 ps/nm has been demonstrated, with 58 GHz +/-0.4 dB flat passband on 85 GHz spacing. The group delay ripple is less than 7 ps and the penalty with 40 Gb/s CSRZ is 0.7 dB.

© 2004 IEEE

PDF Article

References

  • View by:
  • |

  1. B. J. Eggleton, A. Ahuja, P. S. Westbrook, J. A. Rogers, P. Kuo, T. N. Nielsen and B. Mikkelsen, " integrated tunable fiber gratings for dispersion management in high-bit rate systems", J. Lightwave Technol. , vol. 18, pp. 1418-1432, 2000.
  2. C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez and R. E. Scotti, " integrated all-pass filters for tunable dispersion and dispersion slope compensation", IEEE Photon. Technol. Lett., vol. 11, pp. 1623-1625, 1999.
  3. D. J. Moss, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran and C. A. Hulse, "Tunable dispersion and dispersion slope compensators for 10 gb/s using all-pass multicavity etalons", IEEE Photon. Technol. Lett., vol. 15, pp. 730-732, May 2003.
  4. C. K. Madsen, J. A. Walker, J. E. Ford, K. W. Goossen, T. N. Nielsen and G. Lenz, "A tunable dispersion compensating MEMS all-pass filter", IEEE Photon. Technol. Lett., vol. 12, pp. 651-653, June 2000.
  5. K. Yu and O. Solgaard, "Tunable chromatic dispersion compensators using MEMS Gires-Tournois interferometers", in IEEE/LEOS Int. Conf. Optical MEM's 2002 Conf. Dig., 2002, pp. 181-182.
  6. M. Shirasaki, "Chromatic-dispersion compensator using virtually imaged phased array", IEEE Photon. Technol. Lett., vol. 9, pp. 1598-1600, 1997.
  7. T. Sano, M. Harumoto, T. Iwashima, T. Kanie, M. Katayama, M. Nishimura, M. Shigehara and H. Suganuma, "Novel multi-channel tunable chromatic dispersion compensator based on MEMS & diffraction grating", in Optical Fiber Communication Conf., 2003, pp. 722-723.
  8. A. M. Weiner, D. E. Leaird, J. S. Patel and J. R. Wullert, "Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator", IEEE J. Quantum Electron., vol. 28, pp. 908-920, Apr. 1992.
  9. C. R. Doerr, L. W. Stulz, S. Chandrasekhar, L. Buhl and R. Pafchek, "Multichannel integrated tunable dispersion compensator employing a thermooptic lens", in Optical Fiber Communication Conf., 2002, postdeadline paper FA6-1.
  10. O. E. Martinez, "Design of high-power ultrashort pulse amplifiers by expansion and recompression", IEEE J. Quantum Electron., vol. 23, pp. 1385-1387, 1987.
  11. M. M. Wefers and K. A. Nelson, "Space-time profiles of shaped ultrafast optical waveforms", IEEE J. Quantum Electron., vol. 32, pp. 161-172, 1996.
  12. G. Lenz, B. J. Eggleton, C. R. Giles, C. K. Madsen and R. E. Slusher, "Dispersive properties of optical filters for WDM systems", IEEE J. Quantum Electron., pp. 1390-1402, Aug. 1998.
  13. D. M. Marom, D. T. Neilson, D. S. Greywall, V. Aksyuk, M. E. Simon, N. R. Basavanhally, P. R. Kolodner, Y. L. Low, F. Pardo, C. A. Bolle, C. S. Pai, D. López, J. A. Taylor, J. E. Bower, J. Leuthold, M. Gibbons and C. R. Giles, "Wavelength selective 4 × 1 switch with high spectral efficiency, 10 dB dynamic equalization range and internal blocking capability", in ECOC 2003, Rimini, Italy, Sept. 21-25 2003.
  14. http://www.gratinglab.com/library/telecom/1800.pdf [Online].
  15. D. M. Marom, D. T. Neilson, D. S. Greywall, N. R. Basavanhally, P. R. Kolodner, Y. L. Low, C. A. Bolle, S. Chandrasekhar, L. Buhl, S.-H. Oh, C. S. Pai, K. Werder, H. T. Soh, G. R. Bogart, E. Ferry, F. P. Klemens, K. Teffeau, J. F. Miner, S. Rogers, J. E. Bower, R. C. Keller and W. Mansfield, "Wavelength selective 1 × 4 switch for 128 WDM channels at 50 GHz spacing", in Optical Fiber Communication Conf. Exhibit (OFC 2002), 2002, pp. 857-859.
  16. H. R. Shea, S. Arney, A. Gasparyan, M. Haueis, V. A. Aksyuk, C. A. Bolle, R. E. Frahm, S. Goyal, F. Pardo and M. E. Simon, "Design for reliability of MEMS/MOEMS for lightwave telecommunications", in 15th Annual Meeting IEEE Lasers and Electro-Optics Soc. (LEOS 2002), vol. 2, 2002, pp. 418-419.

Other (16)

B. J. Eggleton, A. Ahuja, P. S. Westbrook, J. A. Rogers, P. Kuo, T. N. Nielsen and B. Mikkelsen, " integrated tunable fiber gratings for dispersion management in high-bit rate systems", J. Lightwave Technol. , vol. 18, pp. 1418-1432, 2000.

C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez and R. E. Scotti, " integrated all-pass filters for tunable dispersion and dispersion slope compensation", IEEE Photon. Technol. Lett., vol. 11, pp. 1623-1625, 1999.

D. J. Moss, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran and C. A. Hulse, "Tunable dispersion and dispersion slope compensators for 10 gb/s using all-pass multicavity etalons", IEEE Photon. Technol. Lett., vol. 15, pp. 730-732, May 2003.

C. K. Madsen, J. A. Walker, J. E. Ford, K. W. Goossen, T. N. Nielsen and G. Lenz, "A tunable dispersion compensating MEMS all-pass filter", IEEE Photon. Technol. Lett., vol. 12, pp. 651-653, June 2000.

K. Yu and O. Solgaard, "Tunable chromatic dispersion compensators using MEMS Gires-Tournois interferometers", in IEEE/LEOS Int. Conf. Optical MEM's 2002 Conf. Dig., 2002, pp. 181-182.

M. Shirasaki, "Chromatic-dispersion compensator using virtually imaged phased array", IEEE Photon. Technol. Lett., vol. 9, pp. 1598-1600, 1997.

T. Sano, M. Harumoto, T. Iwashima, T. Kanie, M. Katayama, M. Nishimura, M. Shigehara and H. Suganuma, "Novel multi-channel tunable chromatic dispersion compensator based on MEMS & diffraction grating", in Optical Fiber Communication Conf., 2003, pp. 722-723.

A. M. Weiner, D. E. Leaird, J. S. Patel and J. R. Wullert, "Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator", IEEE J. Quantum Electron., vol. 28, pp. 908-920, Apr. 1992.

C. R. Doerr, L. W. Stulz, S. Chandrasekhar, L. Buhl and R. Pafchek, "Multichannel integrated tunable dispersion compensator employing a thermooptic lens", in Optical Fiber Communication Conf., 2002, postdeadline paper FA6-1.

O. E. Martinez, "Design of high-power ultrashort pulse amplifiers by expansion and recompression", IEEE J. Quantum Electron., vol. 23, pp. 1385-1387, 1987.

M. M. Wefers and K. A. Nelson, "Space-time profiles of shaped ultrafast optical waveforms", IEEE J. Quantum Electron., vol. 32, pp. 161-172, 1996.

G. Lenz, B. J. Eggleton, C. R. Giles, C. K. Madsen and R. E. Slusher, "Dispersive properties of optical filters for WDM systems", IEEE J. Quantum Electron., pp. 1390-1402, Aug. 1998.

D. M. Marom, D. T. Neilson, D. S. Greywall, V. Aksyuk, M. E. Simon, N. R. Basavanhally, P. R. Kolodner, Y. L. Low, F. Pardo, C. A. Bolle, C. S. Pai, D. López, J. A. Taylor, J. E. Bower, J. Leuthold, M. Gibbons and C. R. Giles, "Wavelength selective 4 × 1 switch with high spectral efficiency, 10 dB dynamic equalization range and internal blocking capability", in ECOC 2003, Rimini, Italy, Sept. 21-25 2003.

http://www.gratinglab.com/library/telecom/1800.pdf [Online].

D. M. Marom, D. T. Neilson, D. S. Greywall, N. R. Basavanhally, P. R. Kolodner, Y. L. Low, C. A. Bolle, S. Chandrasekhar, L. Buhl, S.-H. Oh, C. S. Pai, K. Werder, H. T. Soh, G. R. Bogart, E. Ferry, F. P. Klemens, K. Teffeau, J. F. Miner, S. Rogers, J. E. Bower, R. C. Keller and W. Mansfield, "Wavelength selective 1 × 4 switch for 128 WDM channels at 50 GHz spacing", in Optical Fiber Communication Conf. Exhibit (OFC 2002), 2002, pp. 857-859.

H. R. Shea, S. Arney, A. Gasparyan, M. Haueis, V. A. Aksyuk, C. A. Bolle, R. E. Frahm, S. Goyal, F. Pardo and M. E. Simon, "Design for reliability of MEMS/MOEMS for lightwave telecommunications", in 15th Annual Meeting IEEE Lasers and Electro-Optics Soc. (LEOS 2002), vol. 2, 2002, pp. 418-419.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.