Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 21,
  • Issue 9,
  • pp. 2053-
  • (2003)

Polarization-Insensitive Transition Between Sol-Gel Waveguide and Electrooptic Polymer and Intensity Modulation for All-Optical Networks

Not Accessible

Your library or personal account may give you access

Abstract

An intensity modulation using a hybrid electrooptic (EO) polymer/sol-gel straight channel waveguide, useful in the 1550-nm wavelength regime is demonstrated without using Mach-Zehnder interferometric waveguide. The sol-gel waveguide is selectively buried so that a vertical transition into and out of an EO polymer coated on the sol-gel waveguide is arranged. The throughput ratio for transverse electric (TE) and transverse magnetic (TM) modes of the light coupled out of the hybrid waveguide is improved up to 0.9 dB with the help of reduced birefringence of the EO polymer after corona poling. We show that the fabrication process of such hybrid-type waveguides enables production of a phase modulator operating at 1550-nm wavelength. The fabricated straight channel waveguide modulator exhibits stable-and high-intensity modulation efficiency (82%) using a simple cross-polarization setup after the polarization dependence is reduced. We demonstrate an all wet-etching process to fabricate polymeric EO modulators.

© 2003 IEEE

PDF Article
More Like This
Mesoporous sol-gel silica cladding for hybrid TiO2/electro-optic polymer waveguide modulators

Yasufumi Enami, Yasuhisa Kayaba, Jingdong Luo, and Alex K.-Y. Jen
Opt. Express 22(13) 16418-16423 (2014)

Enhanced conductivity of sol-gel silica cladding for efficient poling in electro-optic polymer/TiO2 vertical slot waveguide modulators

Yasufumi Enami, Youssef Jouane, Jingdong Luo, and Alex K-Y. Jen
Opt. Express 22(24) 30191-30199 (2014)

High Δn strip-loaded electro-optic polymer waveguide modulator with low insertion loss

Christopher T. DeRose, R. Himmelhuber, D. Mathine, R. A. Norwood, J. Luo, A. K.-Y. Jen, and N. Peyghambarian
Opt. Express 17(5) 3316-3321 (2009)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved