Abstract

A Pb1-xLax(ZryTiz)1-x/4O3 (PLZT) electrooptic ceramic variable-rotatable waveplate and a compact inline polarimeter have been used to develop a fast feed-forward-controlled module for the continuous and complete conversion of polarization. This requires the control of only two parameters: the direction ? and strength of the applied voltage V0. Feed-forward control speed is fast, taking only 24 µs . The chip plates were made by cutting T-shaped trenches into the four sides of a 500 × 400 × 300-µm3 PLZT chip and coating the trenches with electrodes. The PLZT waveplate is inserted into a 330-µm gap between thermally expanded core fibers. The input polarization states are monitored by a newly developed compact and fast inline polarimeter,which is placed in front of the polarization controller. The optimum ? and V0 values for the required conversion are calculated by a computer, and the corresponding voltages are then applied to PLZT waveplate.

© 2003 IEEE

PDF Article

References

  • View by:
  • |

  1. T. Ohkoshi, "Polarization-state control schemes for heterodyne or homodyne optical fiber communications", J. Lightwave Technol., vol. LT-3, pp. 1232-1237, June 1985.
  2. D. A. Watley, K. S. Farley, B. J. Shaw, W. S. Lee, G. Bordogna, A. P. Hadjifotiou and R. E. Epworth, "Compensation of polarization-mode dispersion exceeding one bit period using single high-birefringence fiber", Electron. Lett., vol. 35, no. 13, pp. 1094-1095, 1999,
  3. T. Takahashi, T. Imai and M. Aiki, "Automatic compensation technique for time-wise fluctuating polarization mode dispersion in in-line amplifier systems", Electron. Lett., vol. 30, no. 4, pp. 348-349, 1994.
  4. T. Ito, K. Fukuchi, K. Sekiya, D. Ogasahara, R. Ohhira and T. Ono, "6.4 Tb/s (160 × 40 Gb/s) WDM transmission experiment with 0.8 bit/Hz spectral efficiency", presented at the 26th Eur. Conf. Optical Communication, Munich, Germany,Postdeadline Paper PD-1.1, Sept. 3-7, 2000.
  5. P. C. Chou, J. M. Fini and H. A. Haus, "Demonstration of a feed-forward PMD compensation technique", IEEE Photon. Technol. Lett., vol. 14, pp. 161 -163, Feb. 2002.
  6. H. Rosenfeld, R. Ulrich, E. Brinkmeyer, U. Feiste, C. Schubert, J. Berger, R. Ludwig, H. G. Weber and A. Ehrhardt, "Feed-forward approach for automatic PMD compensation at 80 Gbit/s over 45-km installed single mode fiber", in Proc. 27th Eur. Conf. Optical Communications, Amsterdam, The Netherlands,Sept. 4 2001, pp. 68-69.
  7. R. Noe, H. Heidrich and D. Hoffmann, "Endless polarization control systems for coherent optics", J. Lightwave Technol., vol. 6, pp. 1199-1208, July 1988.
  8. N. G. Walker and G. R. Walker, "Polarization control for coherent communications", J. Lightwave Technol., vol. 8, pp. 438-458, Mar. 1990.
  9. H. Shimizu, S. Yamazaki, T. Ono and K. Emura, "Highly practical fiber squeezer polarization controller", J. Lightwave Technol., vol. 9, pp. 1217-1223, Oct. 1991 .
  10. S. H. Rumbaugh, M. D. Jones and L. W. Casperson, "Polarization control for coherent fiber-optic system using nematic liquid crystals", J. Lightwave Technol. , vol. 8, pp. 459-465, Mar. 1990.
  11. H. Shimizu and K. Kaede, "Endless polarization controller using electro-optics waveplates", Electron. Lett., vol. 24, no. 7, pp. 412-413, 1988.
  12. Y. Ohtera, T. Chiba and S. Kawakami, "Liquid crystal rotatable waveplates", IEEE Photon. Technol. Lett., vol. 8, pp. 390-392, Mar. 1996.
  13. M. Kurono, "High speed polarization control using a four-electrode LN crystal", Trans. Inst. Elect. Eng. Japan, vol. 118-C, no. 5, pp. 649-655, 1998.
  14. F. Heismann, "Analysis of a reset-free polarization controller for fast automatic polarization stabilization in fiber-optic transmission systems", J. Lightwave Technol., vol. 12, pp. 690-699, Apr. 1994 .
  15. K. Hirabayashi and C. Amano, "Variable and rotatable waveplates of PLZT electro-optic ceramic material on planar waveguide circuits", IEEE Photon. Technol. Lett., vol. 14, pp. 956-958, July 2002 .
  16. H. Takasaki, Japanese Applied Physics Editions: Crystal Optics, Tokyo: Japan: Morikita Publishing Co., Ltd., 1995.
  17. K. Hirabayashi and C. Amano, "Compact in-line polarimeter using Faraday rotator", IEEE Photon. Technol. Lett., December 2003. to be published.

J. Lightwave Technol. (4)

R. Noe, H. Heidrich and D. Hoffmann, "Endless polarization control systems for coherent optics", J. Lightwave Technol., vol. 6, pp. 1199-1208, July 1988.

N. G. Walker and G. R. Walker, "Polarization control for coherent communications", J. Lightwave Technol., vol. 8, pp. 438-458, Mar. 1990.

H. Shimizu, S. Yamazaki, T. Ono and K. Emura, "Highly practical fiber squeezer polarization controller", J. Lightwave Technol., vol. 9, pp. 1217-1223, Oct. 1991 .

F. Heismann, "Analysis of a reset-free polarization controller for fast automatic polarization stabilization in fiber-optic transmission systems", J. Lightwave Technol., vol. 12, pp. 690-699, Apr. 1994 .

Other (13)

K. Hirabayashi and C. Amano, "Variable and rotatable waveplates of PLZT electro-optic ceramic material on planar waveguide circuits", IEEE Photon. Technol. Lett., vol. 14, pp. 956-958, July 2002 .

H. Takasaki, Japanese Applied Physics Editions: Crystal Optics, Tokyo: Japan: Morikita Publishing Co., Ltd., 1995.

K. Hirabayashi and C. Amano, "Compact in-line polarimeter using Faraday rotator", IEEE Photon. Technol. Lett., December 2003. to be published.

S. H. Rumbaugh, M. D. Jones and L. W. Casperson, "Polarization control for coherent fiber-optic system using nematic liquid crystals", J. Lightwave Technol. , vol. 8, pp. 459-465, Mar. 1990.

H. Shimizu and K. Kaede, "Endless polarization controller using electro-optics waveplates", Electron. Lett., vol. 24, no. 7, pp. 412-413, 1988.

Y. Ohtera, T. Chiba and S. Kawakami, "Liquid crystal rotatable waveplates", IEEE Photon. Technol. Lett., vol. 8, pp. 390-392, Mar. 1996.

M. Kurono, "High speed polarization control using a four-electrode LN crystal", Trans. Inst. Elect. Eng. Japan, vol. 118-C, no. 5, pp. 649-655, 1998.

T. Ohkoshi, "Polarization-state control schemes for heterodyne or homodyne optical fiber communications", J. Lightwave Technol., vol. LT-3, pp. 1232-1237, June 1985.

D. A. Watley, K. S. Farley, B. J. Shaw, W. S. Lee, G. Bordogna, A. P. Hadjifotiou and R. E. Epworth, "Compensation of polarization-mode dispersion exceeding one bit period using single high-birefringence fiber", Electron. Lett., vol. 35, no. 13, pp. 1094-1095, 1999,

T. Takahashi, T. Imai and M. Aiki, "Automatic compensation technique for time-wise fluctuating polarization mode dispersion in in-line amplifier systems", Electron. Lett., vol. 30, no. 4, pp. 348-349, 1994.

T. Ito, K. Fukuchi, K. Sekiya, D. Ogasahara, R. Ohhira and T. Ono, "6.4 Tb/s (160 × 40 Gb/s) WDM transmission experiment with 0.8 bit/Hz spectral efficiency", presented at the 26th Eur. Conf. Optical Communication, Munich, Germany,Postdeadline Paper PD-1.1, Sept. 3-7, 2000.

P. C. Chou, J. M. Fini and H. A. Haus, "Demonstration of a feed-forward PMD compensation technique", IEEE Photon. Technol. Lett., vol. 14, pp. 161 -163, Feb. 2002.

H. Rosenfeld, R. Ulrich, E. Brinkmeyer, U. Feiste, C. Schubert, J. Berger, R. Ludwig, H. G. Weber and A. Ehrhardt, "Feed-forward approach for automatic PMD compensation at 80 Gbit/s over 45-km installed single mode fiber", in Proc. 27th Eur. Conf. Optical Communications, Amsterdam, The Netherlands,Sept. 4 2001, pp. 68-69.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.