Abstract

A new scheme for all-optical signal reshaping is proposed. It is shown that proper adjustment of the operating conditions of a wavelength converter based on four-wave mixing (FWM) in dispersion-shifted fiber (DSF) results in significant extinction ratio enhancement and noise suppression of the converted signal. The key issue in the proposed idea is the application of the modulation bitstream on the input pump wave. Detailed numerical simulation shows that it is possible to achieve a wavelength-converted output with extinction ratio of 20 dB when the extinction ratio of the input signal is 10.5 dB, while at the same time, the improvement in the Q-factor is almost 6 (from 6.5 at the input, it becomes more than 12 at the output). The theoretical predictions have been experimentally confirmed by measuring the transfer function of the FWM in a 17-km-long DSF under different operating conditions. The obtained results are in a very good agreement with those predicted theoretically.

© 2003 IEEE

PDF Article

References

  • View by:
  • |

  1. D. Marcenac and A. Mecozzi, "Switches and frequency converters based on cross-gain modulation in semiconductor optical amplifiers", IEEE Photon. Technol. Lett., vol. 9, pp. 749-751, June 1997.
  2. T. Durphuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen and K. E. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifier", J. Lightwave Technol., vol. 14, pp. 942-954, June 1996.
  3. A. D'Ottavi, F. Girardin, L. Graziani, F. Martelli, P. Spano, A. Mecozzi, S. Scotti, R. Dall'Ara, J. Eckner and G. Guekos, "Four-wave mixing in semiconductor optical amplifiers: A practical tool for wavelength conversion", IEEE J. Select. Topics Quantum Electron., vol. 3, pp. 522-528, Apr. 1997.
  4. D. F. Geraghty, R. B. Lee, M. Verdiell, M. Ziari, A. Mathur and K. J. Vahala, "Wavelength conversion for WDM communication systems using four-wave mixing in semiconductor optical amplifiers", IEEE J. Select. Topics Quantum Electron., vol. 3, pp. 1146-1155, Oct. 1997.
  5. D. Wolfson, A. Kloch, T. Fjelde, C. Janz, B. Dagens and M. Renaud, "40-Gb/s all-optical wavelength conversion, regeneration and demultiplexing in an SOA-based all-active Mach-Zehnder interferometer", IEEE Photon. Technol. Lett., vol. 12, pp. 332 -334, Mar. 2000.
  6. P. S. Cho, P. Sinha, D. Mahgerefteh and G. M. Carter, "All-optical regeneration at the receiver of 10-Gb/s RZ data transmitted over 30 000 km using an electroabsorption modulator", IEEE Photon. Technol. Lett., vol. 12, pp. 205 -207, Feb. 2000.
  7. N. J. Doran and D. Wood, "Nonlinear-optical loop mirror", Opt. Lett. , vol. 13, pp. 56-58, Jan. 1988.
  8. E. Ciaramella and S. Trillo, "All-optical signal reshaping via four-wave mixing in optical fibers", IEEE Photon. Technol. Lett., vol. 12, pp. 849-851, July 2000.
  9. E. Ciaramella, F. Curti and S. Trillo, "All-optical signal reshaping by means of four-wave mixing in optical fibers", IEEE Photon. Technol. Lett., vol. 13, pp. 142-144, Feb. 2001.
  10. K. O. Hill, D. C. Johnson, B. S. Kawasaki and R. I. MacDonald, "CW three-wave mixing in single-mode optical fibers", J. Appl. Phys., vol. 49, pp. 5098-5106, Oct. 1978.
  11. N. Shibata, R. P. Braun and R. G. Waarts, "Phase-mismatch dependence of efficiency of wave generation through four-wave mixing in a single-mode optical fiber", IEEE J. Quantum. Electron., vol. 23, pp. 1205 -1210, Jul. 1987.
  12. G. P. Agrawal, Nonlinear Fiber Optics, New York: Academic, 1989.
  13. K. Inoue, "Four-wave mixing in an optical fiber in the zero-dispersion wavelength region", J. Lightwave Technol., vol. 10, pp. 1553-1561, Nov. 1992.
  14. M. Karlsson, "Four-wave mixing in fibers with randomly varying zero-dispersion wavelength", J. Opt. Soc. Amer., vol. 15, pp. 2269-2275, Aug. 1998.
  15. G. Capellini and S. Trillo, "Third-order three-wave mixing in single-mode fibers: Exact solutions ans spatial instability effects", J. Opt. Soc. Amer., vol. 8, pp. 824-838, Apr. 1991.
  16. D. Marcuse, A. R. Chraplyvy and R. W. Tkach, "Effect of fiber nonlinearity on long-distance transmission", J. Lightwave Technol., vol. 9, pp. 121-128, Jan. 1991.
  17. S. Song, C. T. Allen, K. R. Demarest and R. Hui, "Intensity-dependent phase-matching effects on four-wave mixing in optical fibers", J. Lightwave Technol., vol. 17, pp. 2285-2289, Nov. 1999.
  18. P. Hedekvist, M. Karlsson and P. A. Andrekson, "Fiber four-wave mixing demultiplexing with inherent parametric amplification", J. Lightwave Technol., vol. 15, pp. 2051-2058, Nov. 1997.
  19. S. Song, C. T. Allen, K. R. Demarest and R. Hui, "A novel method for measuring polarization-mode dispersion using four-wave mixing", J. Lightwave Technol., vol. 17, pp. 2530-2533, Dec. 1999.
  20. T. Yamamoto and M. Nakazawa, "Highly efficient four-wave mixing in an optical fiber with intensity dependent phase matching", IEEE Photon. Technol. Lett., vol. 9, pp. 327-329, Mar. 1997.
  21. D. Marcuse, "Single-channel operation in very long nonlinear fibers with optical amplifiers at zero dispersion", J. Lightwave Technol. , vol. 9, pp. 353-361, Mar. 1991.
  22. L. Prigent and J. P. Hamaide, "Measurement of fiber nonlinear kerr coefficient by four-wave mixing", IEEE Photon. Technol. Lett., vol. 5, pp. 1092-1095, Sept. 1993.

J. Lightwave Technol. (6)

T. Durphuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen and K. E. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifier", J. Lightwave Technol., vol. 14, pp. 942-954, June 1996.

D. Marcuse, A. R. Chraplyvy and R. W. Tkach, "Effect of fiber nonlinearity on long-distance transmission", J. Lightwave Technol., vol. 9, pp. 121-128, Jan. 1991.

S. Song, C. T. Allen, K. R. Demarest and R. Hui, "Intensity-dependent phase-matching effects on four-wave mixing in optical fibers", J. Lightwave Technol., vol. 17, pp. 2285-2289, Nov. 1999.

P. Hedekvist, M. Karlsson and P. A. Andrekson, "Fiber four-wave mixing demultiplexing with inherent parametric amplification", J. Lightwave Technol., vol. 15, pp. 2051-2058, Nov. 1997.

S. Song, C. T. Allen, K. R. Demarest and R. Hui, "A novel method for measuring polarization-mode dispersion using four-wave mixing", J. Lightwave Technol., vol. 17, pp. 2530-2533, Dec. 1999.

K. Inoue, "Four-wave mixing in an optical fiber in the zero-dispersion wavelength region", J. Lightwave Technol., vol. 10, pp. 1553-1561, Nov. 1992.

Other (16)

M. Karlsson, "Four-wave mixing in fibers with randomly varying zero-dispersion wavelength", J. Opt. Soc. Amer., vol. 15, pp. 2269-2275, Aug. 1998.

G. Capellini and S. Trillo, "Third-order three-wave mixing in single-mode fibers: Exact solutions ans spatial instability effects", J. Opt. Soc. Amer., vol. 8, pp. 824-838, Apr. 1991.

D. Marcenac and A. Mecozzi, "Switches and frequency converters based on cross-gain modulation in semiconductor optical amplifiers", IEEE Photon. Technol. Lett., vol. 9, pp. 749-751, June 1997.

T. Yamamoto and M. Nakazawa, "Highly efficient four-wave mixing in an optical fiber with intensity dependent phase matching", IEEE Photon. Technol. Lett., vol. 9, pp. 327-329, Mar. 1997.

D. Marcuse, "Single-channel operation in very long nonlinear fibers with optical amplifiers at zero dispersion", J. Lightwave Technol. , vol. 9, pp. 353-361, Mar. 1991.

L. Prigent and J. P. Hamaide, "Measurement of fiber nonlinear kerr coefficient by four-wave mixing", IEEE Photon. Technol. Lett., vol. 5, pp. 1092-1095, Sept. 1993.

A. D'Ottavi, F. Girardin, L. Graziani, F. Martelli, P. Spano, A. Mecozzi, S. Scotti, R. Dall'Ara, J. Eckner and G. Guekos, "Four-wave mixing in semiconductor optical amplifiers: A practical tool for wavelength conversion", IEEE J. Select. Topics Quantum Electron., vol. 3, pp. 522-528, Apr. 1997.

D. F. Geraghty, R. B. Lee, M. Verdiell, M. Ziari, A. Mathur and K. J. Vahala, "Wavelength conversion for WDM communication systems using four-wave mixing in semiconductor optical amplifiers", IEEE J. Select. Topics Quantum Electron., vol. 3, pp. 1146-1155, Oct. 1997.

D. Wolfson, A. Kloch, T. Fjelde, C. Janz, B. Dagens and M. Renaud, "40-Gb/s all-optical wavelength conversion, regeneration and demultiplexing in an SOA-based all-active Mach-Zehnder interferometer", IEEE Photon. Technol. Lett., vol. 12, pp. 332 -334, Mar. 2000.

P. S. Cho, P. Sinha, D. Mahgerefteh and G. M. Carter, "All-optical regeneration at the receiver of 10-Gb/s RZ data transmitted over 30 000 km using an electroabsorption modulator", IEEE Photon. Technol. Lett., vol. 12, pp. 205 -207, Feb. 2000.

N. J. Doran and D. Wood, "Nonlinear-optical loop mirror", Opt. Lett. , vol. 13, pp. 56-58, Jan. 1988.

E. Ciaramella and S. Trillo, "All-optical signal reshaping via four-wave mixing in optical fibers", IEEE Photon. Technol. Lett., vol. 12, pp. 849-851, July 2000.

E. Ciaramella, F. Curti and S. Trillo, "All-optical signal reshaping by means of four-wave mixing in optical fibers", IEEE Photon. Technol. Lett., vol. 13, pp. 142-144, Feb. 2001.

K. O. Hill, D. C. Johnson, B. S. Kawasaki and R. I. MacDonald, "CW three-wave mixing in single-mode optical fibers", J. Appl. Phys., vol. 49, pp. 5098-5106, Oct. 1978.

N. Shibata, R. P. Braun and R. G. Waarts, "Phase-mismatch dependence of efficiency of wave generation through four-wave mixing in a single-mode optical fiber", IEEE J. Quantum. Electron., vol. 23, pp. 1205 -1210, Jul. 1987.

G. P. Agrawal, Nonlinear Fiber Optics, New York: Academic, 1989.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.