Abstract

In this paper, we review recent advances in ultrafast optical time-domain technology with emphasis on the use in optical packet switching. In this respect, several key building blocks, including high-rate laser sources applicable to any time-division-multiplexing (TDM) application, optical logic circuits for bitwise processing, and clock-recovery circuits for timing synchronization with both synchronous and asynchronous data traffic, are described in detail. The circuits take advantage of the ultrafast nonlinear transfer function of semiconductor-based devices to operate successfully at rates beyond 10 Gb/s. We also demonstrate two more complex circuits-a header extraction unit and an exchange-bypass switch-operating at 10 Gb/s. These two units are key blocks for any general-purpose packet routing/switching application. Finally, we discuss the system perspective of all these modules and propose their possible incorporation in a packet switch architecture to provide low-level but high-speed functionalities. The goal is to perform as many operations as possible in the optical domain to increase node throughput and to alleviate the network from unwanted and expensive optical-electrical-optical conversions.

© 2003 IEEE

PDF Article

References

  • View by:
  • |

  1. H. Avramopoulos, "A system perspective of all-optical digital logic gates", in IEEE/LEOS Summer Topicals 2002 (Invited Talk), Tech. Dig. ME2, QC, Canada,July 2002, pp. 4, 15-17.
  2. H. Avramopoulos, "TDM devices and their applications", presented at the Opt. Fiber Commun. 2001, WE1 (Tutorial), Anaheim, CA, 2001.
  3. R. S. Tucker and W. D. Zhong, "Photonic packet switching: An overview", IEICE Trans. Commun., vol. E82-B, no. 2, pp. 254-264, Feb. 1999.
  4. K. E. Stubkjaer, "Semiconductor optical amplifier-based all-optical gates for high-speed optical processing (Invited Paper)", IEEE J. Select. Topics Quantum Electron., vol. 6, pp. 1428-1435, Nov.-Dec. 2000.
  5. C. Bintjas, N. Pleros and H. Avramopoulos, "System perspective for all-optical switching", IEEE LEOS Newslett., vol. 16, pp. 19-21, Oct. 2002.
  6. A. Lattes, H. Haus, F. Leonberger and E. Ippen, "An ultrafast all-optical gate", IEEE J. Quantum Electron., vol. 19, pp. 1718-1723, Nov. 1983 .
  7. J. P. Sokoloff, P. R. Prucnal, I. Glesk and M. Kane, "A terahertz optical asymmetric demultiplexer (TOAD)", IEEE Photon. Technol. Lett., vol. 5, pp. 787 -790, July 1993.
  8. A. H. Huang, et al. "Sagnac fiber logic gates and their possible applications: A system perspective", Appl. Opt., vol. 33, pp. 6254-6267, Sept. 1994.
  9. M. Jinno and T. Matsumoto, "Nonlinear sagnac interferometer switch and its applications", IEEE J. Quantum Elect., vol. 28, pp. 875-882, Apr. 1992.
  10. M. Eiselt, W. Pieper and H. G. Weber, "SLALOM: Semiconductor laser amplifier in a loop mirror", J. Lightwave Technol., vol. 13, pp. 2099-2112, Oct. 1995 .
  11. N. S. Patel, K. L. Hall and K. A. Rauschenbach, "Interferometric all-optical switches for ultrafast signal processing", Appl. Opt., vol. 37, pp. 2831-2842, May 1998.
  12. K. Tajima, S. Nakamura and Y. Sugimoto, "Ultrafast polarization-discriminating Mach-Zehnder all-optical switch", Appl. Phys. Lett., vol. 67, no. 25, pp. 3709-3711, Dec. 1995.
  13. G. Eichmann, Y. Li and R. R. Alfano, "Digital optical logic using a pulsed sagnac interferometer switch", Opt. Eng., vol. 25, p. 91, 1986.
  14. E. Jahn, et al. "Monolithically integrated nonlinear sagnac interferometer and its application as a 20 Gbit/s all-optical demultiplexer", Electron. Lett., vol. 32, pp. 782-784, Apr. 1996 .
  15. C. Bintjas, et al. "20 Gbps all-optical XOR with UNI gate", IEEE Photon. Technol. Lett., vol. 14, pp. 834-836, July 2000.
  16. T. Fjelde, et al. "Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter", Electron. Lett., vol. 36, no. 22, pp. 1863-1864, Oct. 2000.
  17. T. Houbavlis, et al. "All optical XOR in a semiconductor optical amplifier-assisted fiber Sagnac gate", IEEE Photon. Technol. Lett., vol. 11, pp. 334-336, Mar. 1999 .
  18. K. L. Hall and K. A. Rauscehbach, "100 Gbit/s bitwise logic", Opt. Lett. , vol. 23, pp. 1271-1273, Aug. 1998.
  19. M. Tsurusawa, K. Nishimura and M. Usami, "First demonstration of simultaneous demultiplexing from 80 Gb/s to 2 × 40 Gb/s by SOA-based all-optical polarization switch", in Eur. Conf. Optical Communication, vol. 4, Amsterdam, The Netherlands, 2001, pp. 500-501.
  20. T. Papakyriakopoulos, A. Hatziefremidis, T. Houbavlis and H. Avramopoulos, "10 GHz mode-locked ring laser with external optical modulation of a semiconductor optical amplifier", in Proc. Opt. Fiber Comm. Conf., vol. 1, 1999, pp. 4-6.
  21. N. Onodera, A. J. Lowery, L. Zhai, Z. Ahmed and R. S. Tucker, "Frequency multiplication in actively mode-locked semiconductor lasers", Appl. Phys. Lett., vol. 62, pp. 1329-1331, Mar. 1993.
  22. A. D. Ellis, R. J. Manning, I. D. Phillips and D. Nesset, "1.6 ps pulse generation at 40 GHz in phaselocked ring laser incorporating highly nonlinear fiber for application to 160 Gbit/s OTDM networks", Electron. Lett., vol. 35, no. 8, pp. 645-646, Apr. 1999.
  23. G. Raybon, et al. "Wavelength-tunable actively mode-locked monolithic laser with an integrated vertical coupler filter", Opt. Lett. , vol. 18, no. 16, pp. 1335-1337, Aug. 1993.
  24. N. A. WhitakerJr., H. H. Houh, H. Avramopoulos and T. F. Morse, "All-optical phase-locked oscillator", in IEEE LEOS Annu. Meeting, Nov. 1990, Paper ELT2.4/MOO3,. pp. 93- 95.
  25. C. Wu and N. K. Dutta, "High-repetition-rate optical pulse generation using a rational harmonic mode-locked fiber laser", IEEE J. Quantum Electron., vol. 36, pp. 145-150, Feb. 2000.
  26. E. Yoshida and M. Nakazawa, "80 ~ 200 GHz erbium doped fiber laser using a rational harmonic mode-locking technique", Electron. Lett., vol. 32, no. 15, pp. 1370-1372, July 1996.
  27. G. T. Harvey and L. F. Mollenauer, "Harmonically mode-locked fiber ring laser with an internal Fabry-Pérot stabilizer for soliton transmission", Opt. Lett. , vol. 18, no. 2, pp. 107-109, Jan. 1993.
  28. K. Zoiros, K. Vlachos, T. Stathopoulos, C. Bintjas and H. Avramopoulos, "40 GHz mode-locked SOA fiber ring laser with 20 nm tuning range", in Proc. Opt. Fiber Commun., vol. 1, 2000, pp. 254-256.
  29. K. Vlachos, K. Zoiros, T. Houbavlis and H. Avramopoulos, "10 × 30 GHz pulse train generation from semiconductor amplifier fiber ring laser", IEEE Photon. Technol. Lett., vol. 12, pp. 25-27, Jan. 2000.
  30. J. H. den Besten, et al. "A compact digitally tunable seven-channel ring laser", IEEE Photon. Technol. Lett., vol. 14, pp. 753-755, June 2002.
  31. A. D. Ellis, K. Smith and D. M. Patrick, "All optical clock recovery at bit rates up to 40 Gbit/s", Electron. Lett., vol. 29, pp. 1323-1324, July 1993.
  32. K. Vlachos, G. Theophilopoulos, A. Hatziefremidis and H. Avramopoulos, "30 Gbps all-optical, clock recovery circuit", IEEE Photon. Technol. Lett., vol. 12, pp. 705-707, June 2000.
  33. I. D. Phillips, et al. "100 Gbit/s optical clock recovery using electrical phaselocked loop consisting of commercially available components", Electron. Lett., vol. 36, pp. 650-652, Mar. 2000.
  34. C. Bornholdt, B. Sartorius, S. Schelhase, M. Moehrle and S. Bauer, "Self-pulsating DFB laser for all-optical clock recovery at 40 Gbit/s", Electron. Lett., vol. 36, pp. 327-328, Feb. 2000.
  35. B. Sartorius, C. Bornholdt, S. Bauer and M. Mohrle, "40 Ghz optical clock recovery for application in asynchronous networks", in Eur. Conf. Optical Communication, vol. 3, We.P.32, Amsterdam, The Netherlands, 2001, pp. 442- 443.
  36. C. Bintjas, et al. "Clock recovery circuit for optical packets", IEEE Photon. Technol. Lett., vol. 14, pp. 1363-1365, Sept. 2002.
  37. N. Pleros, et al. "All-optical clock recovery from short, asynchronous data packets at 10 Gbps", IEEE Photon. Technol. Lett., to be published.
  38. M. Jinno and T. Matsutomo, "Optical tank circuits used for all-optical timing recovery", IEEE J. Quantum Electron. , vol. 28, pp. 895-900, Apr. 1992.
  39. "Optical linear feedback shift register", U.S. Patent 5 208 705, Nov. 11, 1991 .
  40. K. Hall, et al. "40-Gbit/s all-optical circulating shift register with an inverter", Opt. Lett. , vol. 22, pp. 1479-1481, Oct.r 1997.
  41. M. Kalyvas, et al. "All-optical write/read memory for 20 Gbit/s data packets", Electron. Lett., vol. 36, pp. 1050-1052, June 2000.
  42. A. J. Poustie, K. J. Blow and R. J. Manning, "All-optical regenerativ memory for long term data storage", Opt. Comm., vol. 140, no. 4, pp. 184-186, Aug. 1997.
  43. W. D. Zhong and R. S. Tucker, "A new wavelength-routed photonic packet buffer combining traveling delay lines with delay-line loops", J. Lightwave Technol., vol. 19, pp. 1085-1092, Aug. 2001.
  44. M. T. Hill, H. de Waardt, G. D. Khoe and H. J. S. Dorren, "All-optical flip-flop based on coupled laser diodes", IEEE J. Quantum Electron., vol. 37, pp. 405-413, Mar. 2001.
  45. G. Theophilopoulos, et al. "Optically addressable 2 × 2 exchange/bypass packet switch", IEEE Photon. Technol. Lett., vol. 14, pp. 693-695, May 2002.
  46. M. T. Hill, et al. "1 × 2 optical packet switch using all-optical header processing", Electron. Lett., vol. 37, pp. 774-775, June 2001.
  47. C. Bintjas, et al. "All-optical packet address and payload separation", IEEE Photon. Technol. Lett., vol. 14, pp. 1728 -1730, Dec. 2002.
  48. D. Cotter, et al. "Self-routing of 100 Gbit/s packets using 6 bit `keyword' address recognition", Electron. Lett., vol. 31, pp. 2201-2202, Dec. 1995 .
  49. T. J. Xia, et al. "All-optical packet-drop demonstration using 100 Gb/s words by integrating fiber-based components", IEEE Photon. Technol. Lett., vol. 10, pp. 153 -155, Jan. 1998.
  50. M. C. Cardakli, et al. "Reconfigurable optical packet header recognition and routing using time-to-wavelength mapping and tunable fiber Bragg gratings for correlation decoding", IEEE Photon. Technol. Lett., vol. 12, pp. 552 -554, May 2000.
  51. S. A. Hamilton and B. S. Robinson, "40-Gb/s all-optical packet synchronization and address comparison for OTDM networks", IEEE Photon. Technol. Lett., vol. 14, pp. 209-211, Feb. 2002.
  52. K.-H. Park and T. Mizumoto, "A packet header recognition assigning the position of a signal in the time axis and its application to all-optical self-routing", J. Lightwave Technol., vol. 19, pp. 1076-1084, Aug. 2001.
  53. P. Toliver, I. Glesk, R. J. Runser, K. Deng, B. Y. Yu and P. R. Prucnal, "Routing of 100 Gb/s words in a packet-switched optical networking demonstration (POND) node", J. Lightwave Technol., vol. 16, pp. 2169-2180, Dec. 1998.
  54. A. D. Ellis, et al. "Ultra-high-speed OTDM networks using semiconductor amplifier-based processing nodes", J. Lightwave Technol. , vol. 13, pp. 761-770, May 1995.
  55. M. Nakazawa, T. Yamamoto and K. R. Tamura, "1.28 Tbit/s-70 km OTDM transmission using third-and fourth-order simultaneous dispersion compensation with a phase modulator", Electron. Lett., vol. 36, no. 24, pp. 2027-2029, Nov. 2000.
  56. N. A. Whitaker and H. Avramopoulos, "Lightwave applications of nonlinear fiber loop mirrors (Invited Talk)", in IEEE Lasers and Electro-Optics Society Annu. Meeting , Nov. 1992, pp. 220-221.
  57. D. Chiaroni, et al. "First demonstration of an asynchronous optical packet switching matrix prototype for MultiTerabit class routers/switches", in Eur. Conf. Optical Communication, vol. 6, Amsterdam, The Netherlands, 2001,PD.A.1.8,. pp. 60-61.
  58. M. Bachmann, et al. "Polarization-Insensitive low-voltage optical waveguide switch using InGaAs/InP four-port Mach-Zehnder interferonmeter", in Proc. Opt. Fiber Commun., 1993, pp. 32-33.
  59. D. Chiaroni, et al. "Physical and logical validation of a network based on all-optical packet switching systems", J. Lightwave Technol., vol. 16, pp. 2255-2264, Dec. 1998.
  60. G. Soulage, et al. "4 × 4 space-switch based on clamped-gain semiconductor optical amplifiers in 16 × 10 Gbits/s WDM experiment", in Proc. Eur. Conf. Opt. Commun. 1996, vol. 4, Sept. 1996,Paper ThD.2.1,. pp. 145-148.
  61. N. Le Sauze, et al. "Modular optical packet switching node for future multi-QoS metro networks", in Proc. Europ. Conf. Opt. Commun., vol. 2, 2000, pp. 21-22.
  62. R. Ramaswami and K. Sivarajan, Optical Networks: A Practical Perspective, 2nd ed. San Mateo, CA: Morgan Kaufman, 2001.

Appl. Opt. (2)

J. Lightwave Technol. (5)

Other (55)

A. D. Ellis, et al. "Ultra-high-speed OTDM networks using semiconductor amplifier-based processing nodes", J. Lightwave Technol. , vol. 13, pp. 761-770, May 1995.

M. Nakazawa, T. Yamamoto and K. R. Tamura, "1.28 Tbit/s-70 km OTDM transmission using third-and fourth-order simultaneous dispersion compensation with a phase modulator", Electron. Lett., vol. 36, no. 24, pp. 2027-2029, Nov. 2000.

N. A. Whitaker and H. Avramopoulos, "Lightwave applications of nonlinear fiber loop mirrors (Invited Talk)", in IEEE Lasers and Electro-Optics Society Annu. Meeting , Nov. 1992, pp. 220-221.

D. Chiaroni, et al. "First demonstration of an asynchronous optical packet switching matrix prototype for MultiTerabit class routers/switches", in Eur. Conf. Optical Communication, vol. 6, Amsterdam, The Netherlands, 2001,PD.A.1.8,. pp. 60-61.

M. Bachmann, et al. "Polarization-Insensitive low-voltage optical waveguide switch using InGaAs/InP four-port Mach-Zehnder interferonmeter", in Proc. Opt. Fiber Commun., 1993, pp. 32-33.

H. Avramopoulos, "A system perspective of all-optical digital logic gates", in IEEE/LEOS Summer Topicals 2002 (Invited Talk), Tech. Dig. ME2, QC, Canada,July 2002, pp. 4, 15-17.

H. Avramopoulos, "TDM devices and their applications", presented at the Opt. Fiber Commun. 2001, WE1 (Tutorial), Anaheim, CA, 2001.

R. S. Tucker and W. D. Zhong, "Photonic packet switching: An overview", IEICE Trans. Commun., vol. E82-B, no. 2, pp. 254-264, Feb. 1999.

K. E. Stubkjaer, "Semiconductor optical amplifier-based all-optical gates for high-speed optical processing (Invited Paper)", IEEE J. Select. Topics Quantum Electron., vol. 6, pp. 1428-1435, Nov.-Dec. 2000.

C. Bintjas, N. Pleros and H. Avramopoulos, "System perspective for all-optical switching", IEEE LEOS Newslett., vol. 16, pp. 19-21, Oct. 2002.

A. Lattes, H. Haus, F. Leonberger and E. Ippen, "An ultrafast all-optical gate", IEEE J. Quantum Electron., vol. 19, pp. 1718-1723, Nov. 1983 .

J. P. Sokoloff, P. R. Prucnal, I. Glesk and M. Kane, "A terahertz optical asymmetric demultiplexer (TOAD)", IEEE Photon. Technol. Lett., vol. 5, pp. 787 -790, July 1993.

M. T. Hill, H. de Waardt, G. D. Khoe and H. J. S. Dorren, "All-optical flip-flop based on coupled laser diodes", IEEE J. Quantum Electron., vol. 37, pp. 405-413, Mar. 2001.

G. Theophilopoulos, et al. "Optically addressable 2 × 2 exchange/bypass packet switch", IEEE Photon. Technol. Lett., vol. 14, pp. 693-695, May 2002.

M. T. Hill, et al. "1 × 2 optical packet switch using all-optical header processing", Electron. Lett., vol. 37, pp. 774-775, June 2001.

C. Bintjas, et al. "All-optical packet address and payload separation", IEEE Photon. Technol. Lett., vol. 14, pp. 1728 -1730, Dec. 2002.

D. Cotter, et al. "Self-routing of 100 Gbit/s packets using 6 bit `keyword' address recognition", Electron. Lett., vol. 31, pp. 2201-2202, Dec. 1995 .

T. J. Xia, et al. "All-optical packet-drop demonstration using 100 Gb/s words by integrating fiber-based components", IEEE Photon. Technol. Lett., vol. 10, pp. 153 -155, Jan. 1998.

M. C. Cardakli, et al. "Reconfigurable optical packet header recognition and routing using time-to-wavelength mapping and tunable fiber Bragg gratings for correlation decoding", IEEE Photon. Technol. Lett., vol. 12, pp. 552 -554, May 2000.

S. A. Hamilton and B. S. Robinson, "40-Gb/s all-optical packet synchronization and address comparison for OTDM networks", IEEE Photon. Technol. Lett., vol. 14, pp. 209-211, Feb. 2002.

G. Soulage, et al. "4 × 4 space-switch based on clamped-gain semiconductor optical amplifiers in 16 × 10 Gbits/s WDM experiment", in Proc. Eur. Conf. Opt. Commun. 1996, vol. 4, Sept. 1996,Paper ThD.2.1,. pp. 145-148.

N. Le Sauze, et al. "Modular optical packet switching node for future multi-QoS metro networks", in Proc. Europ. Conf. Opt. Commun., vol. 2, 2000, pp. 21-22.

R. Ramaswami and K. Sivarajan, Optical Networks: A Practical Perspective, 2nd ed. San Mateo, CA: Morgan Kaufman, 2001.

M. Jinno and T. Matsumoto, "Nonlinear sagnac interferometer switch and its applications", IEEE J. Quantum Elect., vol. 28, pp. 875-882, Apr. 1992.

K. Tajima, S. Nakamura and Y. Sugimoto, "Ultrafast polarization-discriminating Mach-Zehnder all-optical switch", Appl. Phys. Lett., vol. 67, no. 25, pp. 3709-3711, Dec. 1995.

G. Eichmann, Y. Li and R. R. Alfano, "Digital optical logic using a pulsed sagnac interferometer switch", Opt. Eng., vol. 25, p. 91, 1986.

E. Jahn, et al. "Monolithically integrated nonlinear sagnac interferometer and its application as a 20 Gbit/s all-optical demultiplexer", Electron. Lett., vol. 32, pp. 782-784, Apr. 1996 .

C. Bintjas, et al. "20 Gbps all-optical XOR with UNI gate", IEEE Photon. Technol. Lett., vol. 14, pp. 834-836, July 2000.

T. Fjelde, et al. "Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter", Electron. Lett., vol. 36, no. 22, pp. 1863-1864, Oct. 2000.

T. Houbavlis, et al. "All optical XOR in a semiconductor optical amplifier-assisted fiber Sagnac gate", IEEE Photon. Technol. Lett., vol. 11, pp. 334-336, Mar. 1999 .

K. L. Hall and K. A. Rauscehbach, "100 Gbit/s bitwise logic", Opt. Lett. , vol. 23, pp. 1271-1273, Aug. 1998.

M. Tsurusawa, K. Nishimura and M. Usami, "First demonstration of simultaneous demultiplexing from 80 Gb/s to 2 × 40 Gb/s by SOA-based all-optical polarization switch", in Eur. Conf. Optical Communication, vol. 4, Amsterdam, The Netherlands, 2001, pp. 500-501.

T. Papakyriakopoulos, A. Hatziefremidis, T. Houbavlis and H. Avramopoulos, "10 GHz mode-locked ring laser with external optical modulation of a semiconductor optical amplifier", in Proc. Opt. Fiber Comm. Conf., vol. 1, 1999, pp. 4-6.

N. Onodera, A. J. Lowery, L. Zhai, Z. Ahmed and R. S. Tucker, "Frequency multiplication in actively mode-locked semiconductor lasers", Appl. Phys. Lett., vol. 62, pp. 1329-1331, Mar. 1993.

A. D. Ellis, R. J. Manning, I. D. Phillips and D. Nesset, "1.6 ps pulse generation at 40 GHz in phaselocked ring laser incorporating highly nonlinear fiber for application to 160 Gbit/s OTDM networks", Electron. Lett., vol. 35, no. 8, pp. 645-646, Apr. 1999.

G. Raybon, et al. "Wavelength-tunable actively mode-locked monolithic laser with an integrated vertical coupler filter", Opt. Lett. , vol. 18, no. 16, pp. 1335-1337, Aug. 1993.

N. A. WhitakerJr., H. H. Houh, H. Avramopoulos and T. F. Morse, "All-optical phase-locked oscillator", in IEEE LEOS Annu. Meeting, Nov. 1990, Paper ELT2.4/MOO3,. pp. 93- 95.

C. Wu and N. K. Dutta, "High-repetition-rate optical pulse generation using a rational harmonic mode-locked fiber laser", IEEE J. Quantum Electron., vol. 36, pp. 145-150, Feb. 2000.

E. Yoshida and M. Nakazawa, "80 ~ 200 GHz erbium doped fiber laser using a rational harmonic mode-locking technique", Electron. Lett., vol. 32, no. 15, pp. 1370-1372, July 1996.

G. T. Harvey and L. F. Mollenauer, "Harmonically mode-locked fiber ring laser with an internal Fabry-Pérot stabilizer for soliton transmission", Opt. Lett. , vol. 18, no. 2, pp. 107-109, Jan. 1993.

K. Zoiros, K. Vlachos, T. Stathopoulos, C. Bintjas and H. Avramopoulos, "40 GHz mode-locked SOA fiber ring laser with 20 nm tuning range", in Proc. Opt. Fiber Commun., vol. 1, 2000, pp. 254-256.

K. Vlachos, K. Zoiros, T. Houbavlis and H. Avramopoulos, "10 × 30 GHz pulse train generation from semiconductor amplifier fiber ring laser", IEEE Photon. Technol. Lett., vol. 12, pp. 25-27, Jan. 2000.

J. H. den Besten, et al. "A compact digitally tunable seven-channel ring laser", IEEE Photon. Technol. Lett., vol. 14, pp. 753-755, June 2002.

A. D. Ellis, K. Smith and D. M. Patrick, "All optical clock recovery at bit rates up to 40 Gbit/s", Electron. Lett., vol. 29, pp. 1323-1324, July 1993.

K. Vlachos, G. Theophilopoulos, A. Hatziefremidis and H. Avramopoulos, "30 Gbps all-optical, clock recovery circuit", IEEE Photon. Technol. Lett., vol. 12, pp. 705-707, June 2000.

I. D. Phillips, et al. "100 Gbit/s optical clock recovery using electrical phaselocked loop consisting of commercially available components", Electron. Lett., vol. 36, pp. 650-652, Mar. 2000.

C. Bornholdt, B. Sartorius, S. Schelhase, M. Moehrle and S. Bauer, "Self-pulsating DFB laser for all-optical clock recovery at 40 Gbit/s", Electron. Lett., vol. 36, pp. 327-328, Feb. 2000.

B. Sartorius, C. Bornholdt, S. Bauer and M. Mohrle, "40 Ghz optical clock recovery for application in asynchronous networks", in Eur. Conf. Optical Communication, vol. 3, We.P.32, Amsterdam, The Netherlands, 2001, pp. 442- 443.

C. Bintjas, et al. "Clock recovery circuit for optical packets", IEEE Photon. Technol. Lett., vol. 14, pp. 1363-1365, Sept. 2002.

N. Pleros, et al. "All-optical clock recovery from short, asynchronous data packets at 10 Gbps", IEEE Photon. Technol. Lett., to be published.

M. Jinno and T. Matsutomo, "Optical tank circuits used for all-optical timing recovery", IEEE J. Quantum Electron. , vol. 28, pp. 895-900, Apr. 1992.

"Optical linear feedback shift register", U.S. Patent 5 208 705, Nov. 11, 1991 .

K. Hall, et al. "40-Gbit/s all-optical circulating shift register with an inverter", Opt. Lett. , vol. 22, pp. 1479-1481, Oct.r 1997.

M. Kalyvas, et al. "All-optical write/read memory for 20 Gbit/s data packets", Electron. Lett., vol. 36, pp. 1050-1052, June 2000.

A. J. Poustie, K. J. Blow and R. J. Manning, "All-optical regenerativ memory for long term data storage", Opt. Comm., vol. 140, no. 4, pp. 184-186, Aug. 1997.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.