Abstract

This paper presents the design, fabrication, and operation of a newly developed micromechanical optical scanner array using a translating microlens. We have used photoresist reflow techinique to form a microlens on a surface micromachined XY-stage of the scratch-drive actuation mechanism. The lens scanner is placed at the focal length from an incident optical fiber to collimate the transmitting light. The collimated beam is steered two-dimensionally by the XY -motion of the microlens with respect to the incident fiber. We also have developed a theoretical model to predict appropriate initial resist thickness and diameter for the scanning lens. An optical scanning angle of ±7° has been demonstrated by sliding a microlens of 670-µm focal length at a physical stroke of ±67 µm. Typical angular positioning resolution has been estimated to be 0.018°.

© 2003 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription