Abstract

This paper presents a comprehensive analysis of the temperature dependence of a Raman amplifier and the scaling of the Raman gain coefficient with wavelength, modal overlap, and material composition. The temperature dependence is derived by applying a quantum theoretical description, whereas the scaling of the Raman gain coefficient is derived using a classical electromagnetic model. We also present experimental verification of our theoretical findings.

© 2003 IEEE

PDF Article

References

  • View by:
  • |

  1. A. Hasegawa, "Numerical study of optical soliton transmission amplified periodically by the stimulated Raman process", Appl. Opt., vol. 23, p. 3302, 1984.
  2. L. F. Mollenauer, R. H. Stolen and M. N. Islam, "Experimental demonstration of soliton propagation in long fibers: Loss compensated by Raman gain", Opt. Lett. , vol. 10, p. 229, 1985.
  3. E. M. Dianov, A. A. Abramov, M. M. Bubnov, A. V. Shipulin, A. M. Prokhorov, S. L. Semjonov, A. G. Schebunjaev, G. G. Devjatykh, A. N. Guryanov and V. F. Khopin, "Demonstration of 1.3 µm Raman fiber amplifier gain of 25 dB at a pumping power of 300 mW", Opt. Fiber. Technol., vol. 1, p. 236, 1995.
  4. A. K. Srivastava, D. L. Tzeng, A. J. Stentz, J. E. Johnson, M. L. Pearsall, O. Mizuhara, T. A. Strasser, K. F. Dreyer, J. W. Sulhoff, L. Zhang, P. D. Yeates, J. R. Pedrazzani, A. M. Sergent, R. E. Tench, J. M. Freund, T. V. Nguyen, H. Manar, Y. Sun, C. Wolf, M. M. Choy, B. R. Kummer, D. Kalish and A. R. Chraplyvy, "High speed WDM transmission in allwave fiber in both the 1.4 µm and 1.55 µm bands", presented at the Optical Amplifiers Their Applications, Vail, CO, 1998.
  5. T. N. Nielsen, A. J. Stentz, P. B. Hansen, Z. J. Chen, D. S. Vengsarkar, T. A. Strasser, K. Rottwitt, J. H. Park, S. Stulz, S. Cabot, K. S. Feder, P. S. Westbrook and S. G. Kosinski, "1.6 tb/s (40 × 40 gb/s) transmission over 4 × 100 km nonzero-dispersion fiber using hybrid Raman/erbium-doped inline amplifiers", in Eur. Conf. Optical Communication, Nice, France, 1999,PD2-2.
  6. T. N. Nielsen, A. J. Stentz, K. Rottwitt, D. S. Vengsarkar, L. Hsu, P. B. Hansen, J. H. Park, K. S. Feder, T. A. Strasser, S. Cabot, S. Stulz, C. K. Kan, A. F. Judy, J. Sulhoff, S. Y. Park, L. E. Nelson and L. Gruner-Nielsen, "3.28-Tb/s (82 × 40 gb/s) transmission over 3× 100 km nonzero-dispersion fiber using dual c-and l-band hybrid Raman/erbium-doped inline amplifiers", presented at the Optical Fiber Communication Conf., Baltimore, MD, PD23, 2000.
  7. K. Rottwitt and H. D. Kidorf, "A 92-nm bandwidth Raman amplifier", presented at the Optical Fiber Communications Conf., San Jose, CA, PD6, 1998.
  8. P. B. Hansen, L. Eskildsen, S. G. Grubb, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, J. J. Pedrazzani and D. J. DiGiovanni, "Capacity upgrades of transmission systems by Raman amplification", IEEE Photon. Technol. Lett., vol. 9, pp. 262-264, Feb. 1997.
  9. A. Penzkofer, A. Laubereau and W. Kaiser, "High intensity Raman interactions", Prog. Quantum Electron., vol. 6, p. 55, 1982.
  10. Y. R. Chen and N. Bloembergen, "Theory of stimulated Brillouin and Raman scattering", Phys. Rev., vol. 137, p. A1787, 1965.
  11. A. Yariv, Quantum Electronics, New York: Wiley, 1989.
  12. P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics, Cambridge, MA: Cambridge Univ. Press, 1990.
  13. R. W. Boyd, Nonlinear Optics, San Diego, CA: Academic, 1992.
  14. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. San Diego, CA: Academic Press, 2001, ch. 8.
  15. N. Shibata, M. Horigudhi and T. Edahiro, "Raman spectra of binary high-silica glasses and fiber containing GeO2, P2O5 and B2O3", J. Non-Cryst. Solids, vol. 45, p. 115, 1981.
  16. M. D. Levenson and J. J. Song, "Raman-induced Kerr effect with elliptical polarization", J. Opt. Soc. Amer., vol. 66, p. 641, 1976.
  17. D. J. Dougherty, F. X. Kartner, H. A. Haus and E. P. Ippen, "Measurement of the Raman gain spectrum of optical fibers", Opt. Lett., vol. 20, p. 31, 1995.
  18. S. Seikai, T. Nakashima and N. Shibata, "Theory of signal light amplification by stimulated Raman scattering in twisted single-mode optical fibers", J. Lightwave Technol. , vol. LT-4, pp. 583-589, June 1986.
  19. J. Zhang, V. Dominic, M. Missey, S. Sanders and D. Mehuys, "Dependence of Raman polarization dependent gain on pump degree of polarization at high gain levels", Optical Amplifiers and Their Applications, vol. OMB4, 2000 .
  20. H. H. Kee, C. R. S. Fludger and V. Handerek, "Statistical properties of polarization dependent gain in fiber Raman amplifiers", presented at the Optical Fiber Communications Conf., Anaheim, CA, WB2, 2002.
  21. J. S. Wang, J. R. Costelloe and R. H. Stolen, "Reduction of the degree of polarization of a laser diode with a fiber Lyot depolarizer", IEEE Photon. Technol. Lett., vol. 11, pp. 1449-1451, Nov. 1999.
  22. M. J. Adams, An Introduction to Optical Waveguides, New York: Wiley, 1981.
  23. J. Bromage, K. Rottwitt and M. E. Lines, "A method to predict the Raman gain spectra of germanosilicate fibers with arbitrary index profiles", IEEE Photon. Technol. Lett., vol. 14, pp. 24-26, Jan. 2002.
  24. F. L. Galeener, A. J. Leadbetter and M. W. Stringfellow, "Comparison of the neutron, Raman and infrared vibrational spectra of vitreous SiO2, GeO2 and BeF2", Phys. Rev. B, vol. 27, p. 1052, 1983.
  25. N. R. Newbury, "Raman gain: Pump-wavelength dependence in single-mode fiber", Opt. Lett., vol. 27, pp. 1232 -1234, 2002.
  26. K. J. Cordina and C. R. S. Fludger, "Changes in Raman gain coefficient with pump wavelength in modern transmission fibers", Optical Amplifiers and Their Applications, vol. OMC3, 2002.
  27. W. P. Urquhart and P. J. Laybourn, "Effective core area of stimulated Raman scattering in single-mode optical fibers", IEE Proc., vol. 132, p. 210, 1985.
  28. K. Rottwitt, J. Bromage, M. Du and A. J. Stentz, "Design of distributed Raman amplifiers", presented at the Eur. Conf. Optical Communication, Munich, Germany,2000 .

Opt. Lett. (1)

Other (27)

K. J. Cordina and C. R. S. Fludger, "Changes in Raman gain coefficient with pump wavelength in modern transmission fibers", Optical Amplifiers and Their Applications, vol. OMC3, 2002.

W. P. Urquhart and P. J. Laybourn, "Effective core area of stimulated Raman scattering in single-mode optical fibers", IEE Proc., vol. 132, p. 210, 1985.

K. Rottwitt, J. Bromage, M. Du and A. J. Stentz, "Design of distributed Raman amplifiers", presented at the Eur. Conf. Optical Communication, Munich, Germany,2000 .

A. Hasegawa, "Numerical study of optical soliton transmission amplified periodically by the stimulated Raman process", Appl. Opt., vol. 23, p. 3302, 1984.

L. F. Mollenauer, R. H. Stolen and M. N. Islam, "Experimental demonstration of soliton propagation in long fibers: Loss compensated by Raman gain", Opt. Lett. , vol. 10, p. 229, 1985.

E. M. Dianov, A. A. Abramov, M. M. Bubnov, A. V. Shipulin, A. M. Prokhorov, S. L. Semjonov, A. G. Schebunjaev, G. G. Devjatykh, A. N. Guryanov and V. F. Khopin, "Demonstration of 1.3 µm Raman fiber amplifier gain of 25 dB at a pumping power of 300 mW", Opt. Fiber. Technol., vol. 1, p. 236, 1995.

A. K. Srivastava, D. L. Tzeng, A. J. Stentz, J. E. Johnson, M. L. Pearsall, O. Mizuhara, T. A. Strasser, K. F. Dreyer, J. W. Sulhoff, L. Zhang, P. D. Yeates, J. R. Pedrazzani, A. M. Sergent, R. E. Tench, J. M. Freund, T. V. Nguyen, H. Manar, Y. Sun, C. Wolf, M. M. Choy, B. R. Kummer, D. Kalish and A. R. Chraplyvy, "High speed WDM transmission in allwave fiber in both the 1.4 µm and 1.55 µm bands", presented at the Optical Amplifiers Their Applications, Vail, CO, 1998.

T. N. Nielsen, A. J. Stentz, P. B. Hansen, Z. J. Chen, D. S. Vengsarkar, T. A. Strasser, K. Rottwitt, J. H. Park, S. Stulz, S. Cabot, K. S. Feder, P. S. Westbrook and S. G. Kosinski, "1.6 tb/s (40 × 40 gb/s) transmission over 4 × 100 km nonzero-dispersion fiber using hybrid Raman/erbium-doped inline amplifiers", in Eur. Conf. Optical Communication, Nice, France, 1999,PD2-2.

T. N. Nielsen, A. J. Stentz, K. Rottwitt, D. S. Vengsarkar, L. Hsu, P. B. Hansen, J. H. Park, K. S. Feder, T. A. Strasser, S. Cabot, S. Stulz, C. K. Kan, A. F. Judy, J. Sulhoff, S. Y. Park, L. E. Nelson and L. Gruner-Nielsen, "3.28-Tb/s (82 × 40 gb/s) transmission over 3× 100 km nonzero-dispersion fiber using dual c-and l-band hybrid Raman/erbium-doped inline amplifiers", presented at the Optical Fiber Communication Conf., Baltimore, MD, PD23, 2000.

K. Rottwitt and H. D. Kidorf, "A 92-nm bandwidth Raman amplifier", presented at the Optical Fiber Communications Conf., San Jose, CA, PD6, 1998.

P. B. Hansen, L. Eskildsen, S. G. Grubb, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, J. J. Pedrazzani and D. J. DiGiovanni, "Capacity upgrades of transmission systems by Raman amplification", IEEE Photon. Technol. Lett., vol. 9, pp. 262-264, Feb. 1997.

A. Penzkofer, A. Laubereau and W. Kaiser, "High intensity Raman interactions", Prog. Quantum Electron., vol. 6, p. 55, 1982.

Y. R. Chen and N. Bloembergen, "Theory of stimulated Brillouin and Raman scattering", Phys. Rev., vol. 137, p. A1787, 1965.

A. Yariv, Quantum Electronics, New York: Wiley, 1989.

P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics, Cambridge, MA: Cambridge Univ. Press, 1990.

R. W. Boyd, Nonlinear Optics, San Diego, CA: Academic, 1992.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. San Diego, CA: Academic Press, 2001, ch. 8.

N. Shibata, M. Horigudhi and T. Edahiro, "Raman spectra of binary high-silica glasses and fiber containing GeO2, P2O5 and B2O3", J. Non-Cryst. Solids, vol. 45, p. 115, 1981.

M. D. Levenson and J. J. Song, "Raman-induced Kerr effect with elliptical polarization", J. Opt. Soc. Amer., vol. 66, p. 641, 1976.

D. J. Dougherty, F. X. Kartner, H. A. Haus and E. P. Ippen, "Measurement of the Raman gain spectrum of optical fibers", Opt. Lett., vol. 20, p. 31, 1995.

S. Seikai, T. Nakashima and N. Shibata, "Theory of signal light amplification by stimulated Raman scattering in twisted single-mode optical fibers", J. Lightwave Technol. , vol. LT-4, pp. 583-589, June 1986.

J. Zhang, V. Dominic, M. Missey, S. Sanders and D. Mehuys, "Dependence of Raman polarization dependent gain on pump degree of polarization at high gain levels", Optical Amplifiers and Their Applications, vol. OMB4, 2000 .

H. H. Kee, C. R. S. Fludger and V. Handerek, "Statistical properties of polarization dependent gain in fiber Raman amplifiers", presented at the Optical Fiber Communications Conf., Anaheim, CA, WB2, 2002.

J. S. Wang, J. R. Costelloe and R. H. Stolen, "Reduction of the degree of polarization of a laser diode with a fiber Lyot depolarizer", IEEE Photon. Technol. Lett., vol. 11, pp. 1449-1451, Nov. 1999.

M. J. Adams, An Introduction to Optical Waveguides, New York: Wiley, 1981.

J. Bromage, K. Rottwitt and M. E. Lines, "A method to predict the Raman gain spectra of germanosilicate fibers with arbitrary index profiles", IEEE Photon. Technol. Lett., vol. 14, pp. 24-26, Jan. 2002.

F. L. Galeener, A. J. Leadbetter and M. W. Stringfellow, "Comparison of the neutron, Raman and infrared vibrational spectra of vitreous SiO2, GeO2 and BeF2", Phys. Rev. B, vol. 27, p. 1052, 1983.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.