Abstract

We introduce a simple and effective heat sink structure for thin-film vertical cavity surface emitting lasers (VCSELs) in fully embedded board level guided-wave interconnects. A 50% quantum efficiency increase is experimentally confirmed for the 10-µm thin-film VCSELs. The thermal resistance of a 1 × 12 embedded thin-film VCSEL array in printed circuit board (PCB) is further analyzed. The experimental results show an excellent match with the simulated results. The 10-µm-thick VCSEL had the lowest thermal resistance and the highest differential efficiency compared to 250-, 200-, 150-, and 100-µm-thick VCSELs. A substrate removed VCSEL can be used in fully embedded board level optical interconnects without special cooling techniques.

© 2003 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription