Abstract

A detailed theoretical analysis of defect engineering in a channel drop filter consisting of a single point defect near a waveguide in a two-dimensional (2-D) photonic crystal (PC) slab is presented. Initially, engineering of the point defect to control the polarization modes of emitted light is examined. By introducing an elliptical defect laterally shifted from the PC lattice,a single linearly polarized light mode can be selected to emit the majority of light, whereas light emitted from the original circular defect is made up of a range of linearly polarized modes. It is also shown that the ratio of light emitted from the top and bottom side of the defect can be improved considerably by introducing a defect with a stepped section along the vertical axis, thereby increasing the net efficiency of the device.

© 2003 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription