Abstract

An optical electric-power sensor is presented that allows active and apparent powers to be measured simultaneously using one block of bismuth germanate (Bi4Ge3O12) crystal as sensing element, which exhibits both the Faraday effect and the Pockels effect. It is based on the fact that the polarization-related intensity of the light wave passing through the crystal can be modulated by the product signal of applied electric and magnetic fields. When load current and voltage are simultaneously applied to the sensing crystal, the instantaneous electric power signal can be directly obtained from the intensity-modulated light wave. The simultaneous measurements of active power and apparent power,as well as the direction of power flow, have been carried out in experiments. Measurement uncertainty is theoretically analyzed. The potential applications of the proposed optical electric-power sensor are also discussed.

© 2003 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription