Abstract

An accurate two-dimensional (2-D) axial stress profile of a polarization-maintaining (PM) fiber was determined using high-resolution photoelastic tomography. Likewise,determining all of the stress components of the fiber and the complete expression of stress-induced anisotropy was demonstrated. For the first time, we have expressed the anisotropy of a PM fiber in terms of birefringence distribution,and we have displayed the trajectories of principal axes on the cross section of the fiber. Mode coupling between the two orthogonal polarization modes due to the asymmetric stress applying parts of the PM fiber was also analyzed using an approximated coupled mode equation.

© 2003 IEEE

PDF Article

References

  • View by:
  • |

  1. D. Chowdhury and D. Wilcox, "Comparison between optical fiber birefringence by stress anisotropy and geometry deformation", IEEE J. Select. Topics Quantum Electron. , vol. 6, pp. 227-232, Mar./Apr. 2000.
  2. R. A. Bergh, H. C. Lefevre and H. J. Shaw, "An overview of fiber-optic gyroscope", J. Lightwave Technol., vol. LT-2, p. 91, Jan. 1984.
  3. D. A. V. Kliner, J. P. Koplow, L. Goldberg, A. L. G. Carter and J. A. Digweed, "Polarization-maintaining amplifier employing double-clad bow-tie fiber", Opt. Lett., vol. 26, pp. 184-186, 2001.
  4. P. L. Chu and T. Whitbread, "Measurement of stresses in optical fiber and preform", Appl. Opt., vol. 21, pp. 4241-4245, 1982.
  5. T. Abe, Y. Mitsunaga and H. Koga, "Photoelastic computer tomography: a novel measurement method for axial residual stress profile in optical fibers", J. Opt. Soc. Amer. A, vol. 3, pp. 133-138, 1986.
  6. K. W. Raine, R. Feced, S. E. Kanellopoulos and V. Handerek, "Measurement of axial stress at high spatial resolution in ultraviolet-exposed fibers", Appl. Opt., vol. 38, pp. 1086-1095, 1999.
  7. Y. Park, T.-J. Ahn, Y. H. Kim, W.-T. Han, U. C. Paek and D. Y. Kim, "Measurement method for profiling the residual stress and the strain-optic coefficient of an optical fiber", Appl. Opt. , vol. 41, pp. 21-26, 2002.
  8. K. Okamoto, Y. Sasaki and N. Shibata, "Mode coupling effects in stress-applied single polarization fibers", IEEE J. Quantum Electron., vol. QE-18, pp. 1890-1899, Nov. 1982.
  9. P. L. Chu and R. A. Sammut, "Analytical method for calculation of stresses and material birefringence in polarization-maintaining optical fiber", J. Lightwave Technol., vol. LT-2, pp. 650-662, Oct. 1984.
  10. N. Shibata and M. Tokuda, "Measurement of stress profiles in the preform of a polarization-holding fiber with stress-applying parts", J. Lightwave Technol., vol. LT-2, pp. 228-233, Apr. 1984.
  11. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging, Philadelphia, PA: SIAM, 2001, ch. 3.
  12. R. C. O'Rourke, "Three-dimensional photoelsticity", J. Appl. Phys., vol. 22, pp. 872-878, 1951.
  13. A. Puro and K. E. Kell, "Complete determination of stress in fiber preforms of arbitrary cross section", J. Lightwave Technol., vol. 10, pp. 1010-1014, Aug. 1992.
  14. K. Okamoto, Fundamentals of optical waveguides, New York: Academic, 2000, ch. 3.
  15. H. Aben and C. Guillemet, Photoelasticity of Glass, Berlin: Germany: Springer-Verlag, 1993, pp. 56-57.
  16. D. Marcuse, "Coupled-mode theory for anisotropic optical waveguides", Bell Syst. Tech., vol. 54, pp. 985-995, 1975.
  17. S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, New York: McGraw-Hill, 1970, pp. 65-68.

Appl. Opt. (2)

J. Lightwave Technol. (1)

A. Puro and K. E. Kell, "Complete determination of stress in fiber preforms of arbitrary cross section", J. Lightwave Technol., vol. 10, pp. 1010-1014, Aug. 1992.

Opt. Lett. (1)

Other (13)

Y. Park, T.-J. Ahn, Y. H. Kim, W.-T. Han, U. C. Paek and D. Y. Kim, "Measurement method for profiling the residual stress and the strain-optic coefficient of an optical fiber", Appl. Opt. , vol. 41, pp. 21-26, 2002.

K. Okamoto, Y. Sasaki and N. Shibata, "Mode coupling effects in stress-applied single polarization fibers", IEEE J. Quantum Electron., vol. QE-18, pp. 1890-1899, Nov. 1982.

P. L. Chu and R. A. Sammut, "Analytical method for calculation of stresses and material birefringence in polarization-maintaining optical fiber", J. Lightwave Technol., vol. LT-2, pp. 650-662, Oct. 1984.

N. Shibata and M. Tokuda, "Measurement of stress profiles in the preform of a polarization-holding fiber with stress-applying parts", J. Lightwave Technol., vol. LT-2, pp. 228-233, Apr. 1984.

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging, Philadelphia, PA: SIAM, 2001, ch. 3.

R. C. O'Rourke, "Three-dimensional photoelsticity", J. Appl. Phys., vol. 22, pp. 872-878, 1951.

K. Okamoto, Fundamentals of optical waveguides, New York: Academic, 2000, ch. 3.

H. Aben and C. Guillemet, Photoelasticity of Glass, Berlin: Germany: Springer-Verlag, 1993, pp. 56-57.

D. Marcuse, "Coupled-mode theory for anisotropic optical waveguides", Bell Syst. Tech., vol. 54, pp. 985-995, 1975.

S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, New York: McGraw-Hill, 1970, pp. 65-68.

D. Chowdhury and D. Wilcox, "Comparison between optical fiber birefringence by stress anisotropy and geometry deformation", IEEE J. Select. Topics Quantum Electron. , vol. 6, pp. 227-232, Mar./Apr. 2000.

R. A. Bergh, H. C. Lefevre and H. J. Shaw, "An overview of fiber-optic gyroscope", J. Lightwave Technol., vol. LT-2, p. 91, Jan. 1984.

T. Abe, Y. Mitsunaga and H. Koga, "Photoelastic computer tomography: a novel measurement method for axial residual stress profile in optical fibers", J. Opt. Soc. Amer. A, vol. 3, pp. 133-138, 1986.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.