Abstract

A systematic experimental and numerical study of the device performance of waveguide-coupled SiON microresonators with air and polymer cladding is presented. Values of device parameters like propagation losses of the microresonator modes, the off-resonance insertion losses, and the straight waveguide to microresonator coupling are determined by applying a detailed fitting procedure to the experimental results and compared to results of detailed numerical simulations. By comparing the propagation losses of the fundamental TE polarized microresonator mode obtained by fitting to the measured spectra to the also experimentally determined propagation losses in the adjacent straight waveguide and the materials losses,it is possible to identify the loss mechanisms in the microresonator. By comparing experimental results for microresonators with air and polymethylmethacrylate cladding and a detailed numerical study, the influence of the cladding index on the bend losses is evaluated. It is demonstrated that the presence of an upper cladding can, under the right conditions, actually be beneficial for loss reduction.

© 2003 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription