Abstract

The performance of large-band Fabry-Pérot (FP) filters is investigated through numerical simulations and experimental realization. The limitations of the filters are studied theoretically to determine the impact of the chirped fiber Bragg grating (FBG) imperfections on spectral variations of the free spectral range (FSR), finesse, transmission loss, and polarization dependent loss (PDL). All-fiber FP devices are realized experimentally with finesse reaching 240 and covering a spectral band of 26 nm. For finesse up to 80, the filters present acceptable performance in terms of spectral variations of FSR (±3%), finesse, attenuation (±0.5 dB), PDL (< 0.2 dB), and insertion loss (<3 dB).

© 2003 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription