Abstract

High-speed fiber-optic transceiver modules using parallel optics require that oxide-confined vertical-cavity surface-emitting lasers (VCSELs) be moisture resistant in a nonhermetic package. We have found that the conventional storage 85/85 (85°C/85% relative humidity) test does not adequately characterize oxide VCSELs moisture resistance. We have identified three failure modes in the oxide VCSELs under operating conditions in high humidity. In this paper, we discuss the failure mechanisms including dislocation growth, semiconductor cracks, and aperture surface degradation, all associated with operation under high relative humidity. Understanding of these failure modes has led to more appropriate qualification standards and environmentally robust oxide VCSELs.

© 2003 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription