Abstract

An efficient finite-element vector beam propagation formulation for dielectric media with transverse anisotropy is thoroughly presented. This formulation is expressed in terms of the magnetic field's transverse components and includes perfectly matched layers at the truncated boundaries and the wide-angle Pade approach. Several key examples demonstrate the usefulness and effectiveness of the present scheme.

© 2003 IEEE

PDF Article

References

  • View by:
  • |

  1. Y. Tsuji, M. Koshiba and N. Takimoto, "Finite element beam propagation method for anisotropic optical waveguides", J. Lightwave Technol., vol. 17, pp. 723-828, Apr. 1999.
  2. P. Liu and B. J. Li, "Semivectorial beam-propagation method for analyzing polarized modes of rib waveguide", IEEE J. Quantum Electron., vol. 28, pp. 778-782, Apr. 1992.
  3. S. S. A. Obayya, B. M. A. Rahman and H. A. El-Mikati, "New-vectorial numerically efficient propagation algorithm based on the finite element method", J. Lightwave Technol., vol. 18, pp. 409-415, Mar. 2000.
  4. Y. L. Lu and F. A. Fernandez, "An efficient finite-element solution for inhomogeneous anisotropic and lossy dielectric waveguides", IEEE Trans. Microwave Theory Tech., vol. 41, pp. 1215-1223, June-July 1993.
  5. H. E. Hernandez-Figueroa, F. A. Fernandez, Y. Lu and J. B. Davies, "Vectorial finite element modeling of 2D leaky waveguides", IEEE Trans. Magn. , vol. 33, pp. 1710-1713, May 1995.
  6. H. F. Pinheiro and H. E. Hernandez-Figueroa, "Novel finite-flement formulation for vectorial beam propagation analysis in anisotropic medium", IEEE Photon. Technol. Lett., vol. 12, pp. 155 -157, Feb. 2000.
  7. J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves", J. Comput. Phys., vol. 114, no. 10, pp. 185-200, October 1994.
  8. M. Koshiba, Y. Tsuji and M. Hikari, "Finite-element beam-propagation method with perfectly mathed layers boundary conditions", IEEE Trans. Magn., vol. 35, pp. 1482-1485, May 1999.
  9. G. R. Hadley, "Wide-angle beam propagation using pade approximation method", Opt. Lett., vol. 17, no. 10, pp. 1426 -1428, Oct. 1992.
  10. Y. Tsuji and M. Koshiba, "Adaptive mesh generation for full-vectorial guided-mode and bean-propagation solutions", IEEE J. Select. Topics Quantum Electron. , vol. 6, pp. 163-169, Jan./Feb. 2000.
  11. H. F. Pinheiro, "Vectorial beam propagation method based on finite-elements", Ph.D. dissertation, UNICAMP, Sao Paolo, Brazil, 2000.
  12. K. Saitoh and M. Koshiba, "Approximate scalar finite-element beam-propagation method with perfectly matched layers for anisotropic optical waveguides", J. Lightwave Technol., vol. 19, pp. 786-792, May 2001.
  13. H. E. Hernandez-Figueroa, "Simple nonparaxial beam propagation scheme for integrated optics", J. Lightwave Technol., vol. 12, pp. 644-649, Apr. 1994.
  14. S. Selleri, L. Vincetti and M. Zoboli, "Full-vector finite-element beam propagation method for anisotropic device analysis", J. Quantum Electron., vol. 36, pp. 1392-1401, Dec. 2000.
  15. A. Frasson, A. P. Barbero, H. F. Pinheiro and H. E. Hernandez-Figueroa, "Efficient finite-element analysis of magnetoopitic waveguide", in Proc. SBMO/IEEE, MTT-S, AP-S and LEOS Int. Micowave Optoelectronics Conf., IMOC, Rio de Janeiro, Brazil,Aug. 9-12 1999, pp. 589- 592.
  16. Y. Tsuji and M. Koshiba, "Finite element beam propagation method for three-dimensional optical waveguide structures", J. Lightwave Technol. , vol. 17, pp. 1728-1734, Feb. 1997.
  17. E. Montanari, S. Selleri, L. Vincetti and M. Zoboli, "Finite element full-vectorial propagation analysis for three-dimensional z -varying optical waveguide", J. Lightwave Technol., vol. 16, pp. 703-114, Apr. 1998 .

J. Lightwave Technol. (5)

Other (12)

P. Liu and B. J. Li, "Semivectorial beam-propagation method for analyzing polarized modes of rib waveguide", IEEE J. Quantum Electron., vol. 28, pp. 778-782, Apr. 1992.

S. Selleri, L. Vincetti and M. Zoboli, "Full-vector finite-element beam propagation method for anisotropic device analysis", J. Quantum Electron., vol. 36, pp. 1392-1401, Dec. 2000.

A. Frasson, A. P. Barbero, H. F. Pinheiro and H. E. Hernandez-Figueroa, "Efficient finite-element analysis of magnetoopitic waveguide", in Proc. SBMO/IEEE, MTT-S, AP-S and LEOS Int. Micowave Optoelectronics Conf., IMOC, Rio de Janeiro, Brazil,Aug. 9-12 1999, pp. 589- 592.

Y. Tsuji and M. Koshiba, "Finite element beam propagation method for three-dimensional optical waveguide structures", J. Lightwave Technol. , vol. 17, pp. 1728-1734, Feb. 1997.

Y. L. Lu and F. A. Fernandez, "An efficient finite-element solution for inhomogeneous anisotropic and lossy dielectric waveguides", IEEE Trans. Microwave Theory Tech., vol. 41, pp. 1215-1223, June-July 1993.

H. E. Hernandez-Figueroa, F. A. Fernandez, Y. Lu and J. B. Davies, "Vectorial finite element modeling of 2D leaky waveguides", IEEE Trans. Magn. , vol. 33, pp. 1710-1713, May 1995.

H. F. Pinheiro and H. E. Hernandez-Figueroa, "Novel finite-flement formulation for vectorial beam propagation analysis in anisotropic medium", IEEE Photon. Technol. Lett., vol. 12, pp. 155 -157, Feb. 2000.

J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves", J. Comput. Phys., vol. 114, no. 10, pp. 185-200, October 1994.

M. Koshiba, Y. Tsuji and M. Hikari, "Finite-element beam-propagation method with perfectly mathed layers boundary conditions", IEEE Trans. Magn., vol. 35, pp. 1482-1485, May 1999.

G. R. Hadley, "Wide-angle beam propagation using pade approximation method", Opt. Lett., vol. 17, no. 10, pp. 1426 -1428, Oct. 1992.

Y. Tsuji and M. Koshiba, "Adaptive mesh generation for full-vectorial guided-mode and bean-propagation solutions", IEEE J. Select. Topics Quantum Electron. , vol. 6, pp. 163-169, Jan./Feb. 2000.

H. F. Pinheiro, "Vectorial beam propagation method based on finite-elements", Ph.D. dissertation, UNICAMP, Sao Paolo, Brazil, 2000.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.