Abstract

This paper compares methods of active stabilization of an optoelectronic microwave oscillator (OEO) based on insertion of a source of optical group delay into an OEO loop. The performance of an OEO stabilized with either a high-Q optical cavity or an atomic cell is analyzed. We show that the elements play a role of narrow-band microwave filters improving an OEO stability. An atomic cell also allows for locking the oscillation frequency to particular atomic clock transitions. This reports a proof-of-principle experiment on an OEO stabilization using the effect of electromagnetically induced transparency in a hot rubidium atomic vapor cell.

© 2003 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription