Abstract

In this paper, high-speed traveling-wave electroabsorption modulators (TW-EAMs) with strain-compensated InGaAsP multiple quantum wells as the absorption region for analog optical links have been developed. A record-high slope efficiency of 4/V, which is equivalent to a Mach-Zehnder modulator with a V pi of 0.37 V and a high extinction ratio of > 30 dB/V have been measured. A detailed study of the nonlinearity and the spurious-free dynamic range (SFDR) is presented. By optimizing the bias voltage and the input optical power,the SFDR can be improved by 10-30 dB. After minimizing the third-order distortion, an SFDR as high as 128 dB - Hz4/5 is achieved at 10 GHz. A simple link measurement was made using this EAM and an erbium-doped fiber amplifier and a 50-Omega terminated photodetector. At 10 GHz, a link gain of 1 dB is achieved at a detected photocurrent of 7.6 mA with higher gains at lower frequencies. The dependence of link gains on bias voltage, input optical, and radio frequency powers are investigated in detail.

© 2003 IEEE

PDF Article

References

  • View by:
  • |

  1. R. C. Alferness, "Waveguide electrooptic modulators", IEEE Trans. Microwave Theory Tech., vol. MTT-30, pp. 1121 -1137, Aug. 1982.
  2. C. Rolland, K. L. Prosyk, C. M. Maritan and N. Puertz, "High speed and low loss, bulk electroabsorption waveguide modulators at 1.3 m", IEEE Photon. Technol. Lett., vol. 3, pp. 894-896, Oct. 1991.
  3. D. A. B. Miller, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood and C. A. Burus, "Band-edge electroabsorption in quantum well structures: the quantum-confined Stark effect", Phys. Rev. Lett., vol. 53, pp. 2173-2175, 1984.
  4. R. G. Walker, "High-speed III-V semiconductor intensity modulators", IEEE. J. Quantum Electron., vol. 27, pp. 654 -667, Mar. 1991.
  5. W. S. C. Chang, "Multiple quantum well electroabsorption modulators for RF photonic links," in RF Photonic Technology in Optical Fiber Links, W. S. C. Chang, Ed. Cambridge: U.K.: Cambridge Univ. Press, 2002, pp. 133-162.
  6. S. Z. Zhang, P. Abraham and J. E. Bowers, "25 GHz polarization-insensitive electroabsorption modulators with traveling-wave electrodes", IEEE Photon. Technol. Lett., vol. 11, pp. 191-193, Feb. 1999.
  7. K. Yamada, Y. Matsui, T. Kunii and Y. Ogawa, "Negative-chirp electroabsorption modulator using low-wavelength tuning", IEEE Photon. Technol. Lett., vol. 7, pp. 1157-1158, Oct. 1995.
  8. K. K. Loi, X. B. Mei, C. W. Tu and W. S. C. Chang, "Linearization of 1.3-µm MQW electroabsorption modulators using an all-optical frequency-insensitive technique", IEEE Photon. Technol. Lett., vol. 10, pp. 964 -966, July 1998.
  9. R. B. Welstand, S. A. Pappert, Y. Z. Liu, J. M. Chen, J. T. Zhu, A. L. Kellner and P. K. L. Yu, "Enhanced linear dynamic range property of Franz-Keldysh effect waveguide modulator", IEEE Photon. Technol. Lett., vol. 7, pp. 751-753, July 1995.
  10. W. B. Bridges and J. H. Schaffner, "Distortion in linearized electrooptic modulators", IEEE Trans. Microwave Theory Tech., vol. 43, pp. 2184-2197, Sept. 1995.
  11. G. E. Betts and F. J. O'Donnell, "Microwave analog optical links using suboctave linearized modulators", IEEE Photon. Technol. Lett., vol. 8, pp. 1273-1275, Sept. 1996.
  12. E. I. Ackerman and C. H. Cox, "RF fiber-optic link performance", IEEE Microwave Mag., pp. 50-58, Dec. 2001.
  13. G. E. Betts, "LiNbO3 external modulators and their use in high performance analog link," in RF Photonic Technology in Optical Fiber Links, W. S. C. Chang, Ed. Cambridge: U.K.: Cambridge Univ. Press, 2002, pp. 81-129.
  14. C. K. Sun, R. B. Welstand, J. T. Zhu, P. K. L. Yu, Y. Z. Liu and J. M. Chen, "High spurious free dynamic range fiber link using a semiconductor electroabsorption modulator", Electron. Lett., vol. 31, pp. 902-903, 1995.
  15. R. B. Welstand, C. K. Sun, J. T. Zhu, Y. Z. Liu and P. K. L. Yu, "Dual-function electroabsorption waveguide modulator/detector for optoelectronic transceiver applications", IEEE Photon. Technol. Lett., vol. 8, pp. 1540-1542, Nov. 1996.
  16. K. K. Loi, X. B. Mei, C. W. Tu, W. S. C. Chang, D. T. Nichols, L. J. Lembo and J. C. Brock, "Low-loss 1.3-µm MQW electroabsorption modulators for high-linearity analog optical links", IEEE Photon. Technol. Lett., vol. 10, pp. 1572-1574, Nov. 1998.
  17. S. Kaneko, Y. Miyazaki, H. Watanabe, K. Kasahara and T. Tajime, "An electroabsorption modulator module for digital and analog applications", J. Lightwave Technol., vol. 17, pp. 669-676, Apr. 1999.
  18. G. L. Li, P. Mages, C. K. Sun, W. S. C. Chang and P. K. L. Yu, "High-saturation high-speed traveling-wave InGaAsP-InP electroabsorption modulator", IEEE Photon. Technol. Lett., vol. 13, pp. 1076-1078, Oct. 2001.

J. Lightwave Technol. (1)

Other (17)

G. L. Li, P. Mages, C. K. Sun, W. S. C. Chang and P. K. L. Yu, "High-saturation high-speed traveling-wave InGaAsP-InP electroabsorption modulator", IEEE Photon. Technol. Lett., vol. 13, pp. 1076-1078, Oct. 2001.

R. C. Alferness, "Waveguide electrooptic modulators", IEEE Trans. Microwave Theory Tech., vol. MTT-30, pp. 1121 -1137, Aug. 1982.

C. Rolland, K. L. Prosyk, C. M. Maritan and N. Puertz, "High speed and low loss, bulk electroabsorption waveguide modulators at 1.3 m", IEEE Photon. Technol. Lett., vol. 3, pp. 894-896, Oct. 1991.

D. A. B. Miller, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood and C. A. Burus, "Band-edge electroabsorption in quantum well structures: the quantum-confined Stark effect", Phys. Rev. Lett., vol. 53, pp. 2173-2175, 1984.

R. G. Walker, "High-speed III-V semiconductor intensity modulators", IEEE. J. Quantum Electron., vol. 27, pp. 654 -667, Mar. 1991.

W. S. C. Chang, "Multiple quantum well electroabsorption modulators for RF photonic links," in RF Photonic Technology in Optical Fiber Links, W. S. C. Chang, Ed. Cambridge: U.K.: Cambridge Univ. Press, 2002, pp. 133-162.

S. Z. Zhang, P. Abraham and J. E. Bowers, "25 GHz polarization-insensitive electroabsorption modulators with traveling-wave electrodes", IEEE Photon. Technol. Lett., vol. 11, pp. 191-193, Feb. 1999.

K. Yamada, Y. Matsui, T. Kunii and Y. Ogawa, "Negative-chirp electroabsorption modulator using low-wavelength tuning", IEEE Photon. Technol. Lett., vol. 7, pp. 1157-1158, Oct. 1995.

K. K. Loi, X. B. Mei, C. W. Tu and W. S. C. Chang, "Linearization of 1.3-µm MQW electroabsorption modulators using an all-optical frequency-insensitive technique", IEEE Photon. Technol. Lett., vol. 10, pp. 964 -966, July 1998.

R. B. Welstand, S. A. Pappert, Y. Z. Liu, J. M. Chen, J. T. Zhu, A. L. Kellner and P. K. L. Yu, "Enhanced linear dynamic range property of Franz-Keldysh effect waveguide modulator", IEEE Photon. Technol. Lett., vol. 7, pp. 751-753, July 1995.

W. B. Bridges and J. H. Schaffner, "Distortion in linearized electrooptic modulators", IEEE Trans. Microwave Theory Tech., vol. 43, pp. 2184-2197, Sept. 1995.

G. E. Betts and F. J. O'Donnell, "Microwave analog optical links using suboctave linearized modulators", IEEE Photon. Technol. Lett., vol. 8, pp. 1273-1275, Sept. 1996.

E. I. Ackerman and C. H. Cox, "RF fiber-optic link performance", IEEE Microwave Mag., pp. 50-58, Dec. 2001.

G. E. Betts, "LiNbO3 external modulators and their use in high performance analog link," in RF Photonic Technology in Optical Fiber Links, W. S. C. Chang, Ed. Cambridge: U.K.: Cambridge Univ. Press, 2002, pp. 81-129.

C. K. Sun, R. B. Welstand, J. T. Zhu, P. K. L. Yu, Y. Z. Liu and J. M. Chen, "High spurious free dynamic range fiber link using a semiconductor electroabsorption modulator", Electron. Lett., vol. 31, pp. 902-903, 1995.

R. B. Welstand, C. K. Sun, J. T. Zhu, Y. Z. Liu and P. K. L. Yu, "Dual-function electroabsorption waveguide modulator/detector for optoelectronic transceiver applications", IEEE Photon. Technol. Lett., vol. 8, pp. 1540-1542, Nov. 1996.

K. K. Loi, X. B. Mei, C. W. Tu, W. S. C. Chang, D. T. Nichols, L. J. Lembo and J. C. Brock, "Low-loss 1.3-µm MQW electroabsorption modulators for high-linearity analog optical links", IEEE Photon. Technol. Lett., vol. 10, pp. 1572-1574, Nov. 1998.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.