Abstract

Next-generation switches and routers may rely on optical switch fabrics to overcome scalability problems that arise in sizing traditional electrical backplanes into the terabit regime. In this paper, we present and discuss several optical switch fabric technologies. We describe a promising approach based on arrayed waveguide gratings and fast wavelength tuning and explain the challenges with respect to technical and commercial viability. Finally, we demonstrate an optical switch fabric capable of 1.2-Tb/s throughput and show packet switching with four ports running at 40 Gb/s each.

© 2003 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription