Abstract

Next-generation switches and routers may rely on optical switch fabrics to overcome scalability problems that arise in sizing traditional electrical backplanes into the terabit regime. In this paper, we present and discuss several optical switch fabric technologies. We describe a promising approach based on arrayed waveguide gratings and fast wavelength tuning and explain the challenges with respect to technical and commercial viability. Finally, we demonstrate an optical switch fabric capable of 1.2-Tb/s throughput and show packet switching with four ports running at 40 Gb/s each.

© 2003 IEEE

PDF Article

References

  • View by:
  • |

  1. K. Kar, T. Lakshman, D. Stiliadis and L. Tassiulas, "Reduced complexity input buffered switches", in Proc. HOTI VIII,, paper 1.3.
  2. R. Ryf, J. Kim, J. Hickey, A. Gnauck, D. Carr, F. Pardo, C. Bolle, R. Frahm, N. Basavanhally, C. Yoh, D. Ramsey, R. Boie, R. George, J. Kraus, C. Lichtenwalner, R. Papazian, J. Gates, H. Shea, A. Gasparyan, V. Muratov and J. Griffith, "1296-port mems transparent optical crossconnect with 2.07 petabit/s switch capacity", in Proc. OFC'01, 2001, postdeadline paper PD28.
  3. A. Neukermans and R. Ramaswami, "Mems technology for optical networking applications", IEEE Commun. Mag., vol. 39, no. 1, 2001.
  4. J. E. Fouquet, "Compact optical cross-connect switch based on total internal reflection in a fluid-containing planar lightwave circuit", in Proc. OFC'00, 2000, pp. 204- 206.
  5. T. Goh, M. Yasu, K. Hattori, A. Himeno, M. Okuno and Y. Ohmori, "Low loss and high extinction ratio strictly nonblocking 16 × 16 thermooptic matrix switch on 6-in wafer using silica-based planar lightwave circuit technology", J. Lightwave Technol., vol. 19, no. 3, pp. 371-379, Mar. 2001.
  6. D. J. Bishop, C. R. Giles and G. P. Austin, "The lucent lambdarouter: Mems technology of the future here today", IEEE Commun. Mag., vol. 40, no. 3, pp. 75-79, 2002.
  7. P. Granestrand, B. Lagerström, P. Svensson, H. Olofsson, J. Falk and B. Stoltz, "Pigtailed tree-structured 8 × 8 LiNbO3 switch matrix with 112 digital optical switches", IEEE Photon. Technol. Lett., vol. 6, pp. 71-73, Jan. 1994.
  8. H. Okayama and M. Kawahara, "Prototype 32 × 32 optical switch matrix", Electron. Lett., vol. 30, no. 14, pp. 1128-1129, 1994.
  9. K. Hamamoto, T. Anan, K. Komatsu, M. Sugimoto and I. Mito, "First 8 × 8 semiconductor optical matrix switches using GaAs/AlGaAs electro-optic guided-wave directional couplers", Electron. Lett., vol. 28, no. 5, pp. 441-443, 1992.
  10. J. Sasaki, H. Hatakeyama, T. Tamanuki, S. Kitamura, M. Yamaguchi, N. Kitamura, T. Shimoda, M. Kitamura, T. Kato and M. Itoh, "Hybrid integrated 4 × 4 optical matrix switch using self-aligned semiconductor optical amplifier gate arrays and silica planar lightwave circuit", Electron. Lett., vol. 34, no. 10, pp. 986-987, 1998.
  11. N. Sahri, D. Prieto, S. Silvestre, D. Keller, F. Pommereau, M. Renaud, O. Rofidal, A. Dupas, F. Dorgeuille and D. Chiaroni, "A highly integrated 32-SOA gates optoelectronic module suitable for IP multi-terabit optical packet routers", in Proc. OFC'01, 2001, postdeadline paper PD32.
  12. D. Chiaroni, P. Bonno, O. Rofidal, J. Jacquinot, P. Poignant, C. Coeurjoly, F. Fernandez, E. Mestre, J. Moncelet, A. Noury, A. Jourdan, T. Zami, A. Dupas, M. Renaud, N. Sahri, D. Keller, S. Silvestre, G. Eilenberger, S. Bunse, W. Lautenschlaeger and F. Masetti, "First demonstration of an asynchronous optical packet switching matrix prototype for multiterabit-class routers/switches", in Proc. ECOC'01, 2001, postdeadline paper ThA4.11.
  13. E. Shekel, A. Feingold, Z. Fradkin, A. Geron, J. Levy, G. Matmon, D. Majer, E. Rafaely, M. Rudman, G. Tidhar, J. Vecht and S. Ruschin, "64 × 64 fast optical switching module", in Proc. OFC'02, 2002, paper TuF3.
  14. M. K. Smit, "New focusing and dispersive planar component based on an optical phased array", Electron. Lett., vol. 24, no. 7, pp. 385-386, Mar. 1988.
  15. C. Dragone, "An N × N optical multiplexer using a planar arrangement of two star couplers", IEEE Photon. Technol. Lett., vol. 3, pp. 812-815, Sept. 1991 .
  16. P. Bernasconi, C. Doerr, C. Dragone, M. Cappuzzo, E. Laskowski and A. Paunescu, "Large N × N waveguide grating routers", J. Lightwave Technol., vol. 18, pp. 985-991, July 2000.
  17. K. Okamoto, T. Hasegawa, O. Ishida, A. Himeno and Y. Ohmori, "32 × 32 arrayed-waveguide grating multiplexer with uniform loss and cyclic frequency characteristics", Electron. Lett., vol. 33, no. 22, pp. 1865-1866, Oct. 1997.
  18. M. K. Smit and C. V. Dam, "PHASAR-based WDM-devices: Principles, design and applications", IEEE J. Select. Topics Quantum Electron., vol. 2, pp. 236-250, June 1996.
  19. P. G. Bernasconi, L. W. Stulz, M. A. Cappuzzo, E. Y. Chen, L. T. Gomez, E. J. Laskowski and A. Wong-foy, "N× N arrayed waveguide gratings with improved frequency accuracy", IEEE J. Select. Topics Quantum Electron., vol. 8, pp. 1115-1121, Nov. 2002.
  20. J. Gripp, M. Duelk, J. Simsarian, S. Chandrasekhar, P. Bernasconi, A. Bhardwaj, Y. Su, K. Sherman, L. Buhl, E. Laskowski, M. Capuzzo, L. Stulz, M. Zirngibl, O. Laznicka, T. Link, R. Seitz, P. Mayer and M. Berger, "Demonstration of a 1.2 Tb/s optical packet switch fabric (32 * 40 Gb/s) based on 40 Gb/s burst-mode clock-data-recovery, fast tunable lasers and a high-performance NxN AWG", in Proc. ECOC'01, 2001,postdeadline paper ThA4.8.
  21. M. Duelk, J. Gripp, J. Simsarian, A. Bhardwaj, P. Bernasconi, M. Zirngibl and O. Laznicka, "Fast packet routing in a 2.5 Tb/s optical switch fabric with 40 Gb/s duobinary signals at 0.8 b/s/Hz spectral efficiency", in Proc. OFC'03, 2003, postdeadline paper PD08.
  22. F. P. Schäfer, W. Schmidt and J. Volze, "Organic dye solution laser", Appl. Phys. Lett., vol. 9, pp. 306-309, 1966.
  23. C. Shannon, D. Moore and K. Claffy, (2002, Nov.) Beyond folklore: Observations on fragmented traffic. IEEE/ACM Trans. Networking. [Online]. Available: http://www.caida.org/outreach/papers/2002/Frag/frag.pdf.
  24. V. Jayaraman, Z. M. Chuang and L. A. Coldren, "Theory, design and performance of extended tuning range semiconductor lasers with sampled gratings", IEEE J. Quantum Electron., vol. 29, pp. 1824-1834, June 1993 .
  25. R. C. Alferness, T. L. Koch, L. L. Buhl, F. Storz, F. Heismann and M. J. R. Martyak, "Grating-assisted InGaAsP/InP vertical codirectional coupler filter", Appl. Phys. Lett., vol. 55, no. 19, pp. 2011-2013, 1989.
  26. G. Busico, N. D. Whitbread, P. J. Williams, D. J. Robbins, A. J. Ward and D. C. J. Reid, "A widely tunable digital supermode DBR laser with high SMSR", in Proc. ECOC'02, 2002, paper 3.3.2.
  27. J. B. D. Soole, K. Poguntke, A. Scherer, H. P. LeBlanc, C. Chang-Hasnain, J. R. Hayes, C. Caneau, R. Bhat and M. A. Koza, "Multistripe array grating integrated cavity (MAGIC) laser: a new semiconductor laser for WDM applications", Electron. Lett., vol. 28, no. 19, pp. 1805-1807, Sept. 1992.
  28. M. Zirngibl, C. H. Joyner, L. W. Stulz, U. Koren, M. D. Chien, M. G. Young and B. I. Miller, "Digitally tunable laser based on the integration of a waveguide grating multiplexer and an optical amplifier", IEEE Photon. Technol. Lett., vol. 6, pp. 516 -518, Apr. 1994.
  29. M. Kauer, M. Girault, J. Leuthold, J. Honthaas, O. Pellegri, C. Goullancourt and M. Zirngibl, "16-channel digitally tunable packet switching transmitter with sub-nanosecond switching time", in Proc. ECOC'02 , 2002, paper 3.3.3.
  30. Y. Kotaki and K. Morito, "Wavelength tunable DFB laser array for WDM applications", in Proc. ECOC'02, 2002, paper 3.3.1.
  31. J. E. Simsarian, A. Bhardwaj, J. Gripp, K. Sherman, Y. Su, C. Webb, L. Zhang and M. Zirngibl, "Fast switching characteristics of a widely tunable laser transmitter", IEEE Photon. Technol. Lett., vol. 15, pp. 1038-1040, Aug. 2003.
  32. Multi-Source Agreement for Tunable Lasers. [Online]. Available: http://www.tunablemsa.com
  33. A. Bhardwaj, J. Gripp, J. E. Simsarian and M. Zirngibl, "Demonstration of stable wavelength switching on a fast tunable laser transmitter", IEEE Photon. Technol. Lett., vol. 15, pp. 1014-1016, July 2003.
  34. M. Reinhold, C. Dorschky, E. Rose, R. Pullela, P. Mayer, F. Kunz, Y. Baeyens, T. Link and J.-P. Mattia, "A fully integrated 40-Gb/s clock and data recovery IC with 1:4 DEMUX in SiGe technology", IEEE J. Solid-State Circuits, vol. 36, pp. 1937-1945, Dec. 2001.
  35. J. Gripp, M. Duelk, J. Simsarian, P. Bernasconi, A. Bhardwaj, K. Sherman, K. Dreyer, M. Zirngibl and O. Laznicka, "4 × 4 demonstration of a 1.2 Tb/s (32× 40 Gb/s) optical switch fabric for multi-Tb/s packet routers", in Proc. ECOC'02, 2002,postdeadline paper PD2.4.

J. Lightwave Technol. (1)

Other (34)

K. Kar, T. Lakshman, D. Stiliadis and L. Tassiulas, "Reduced complexity input buffered switches", in Proc. HOTI VIII,, paper 1.3.

R. Ryf, J. Kim, J. Hickey, A. Gnauck, D. Carr, F. Pardo, C. Bolle, R. Frahm, N. Basavanhally, C. Yoh, D. Ramsey, R. Boie, R. George, J. Kraus, C. Lichtenwalner, R. Papazian, J. Gates, H. Shea, A. Gasparyan, V. Muratov and J. Griffith, "1296-port mems transparent optical crossconnect with 2.07 petabit/s switch capacity", in Proc. OFC'01, 2001, postdeadline paper PD28.

A. Neukermans and R. Ramaswami, "Mems technology for optical networking applications", IEEE Commun. Mag., vol. 39, no. 1, 2001.

J. E. Fouquet, "Compact optical cross-connect switch based on total internal reflection in a fluid-containing planar lightwave circuit", in Proc. OFC'00, 2000, pp. 204- 206.

T. Goh, M. Yasu, K. Hattori, A. Himeno, M. Okuno and Y. Ohmori, "Low loss and high extinction ratio strictly nonblocking 16 × 16 thermooptic matrix switch on 6-in wafer using silica-based planar lightwave circuit technology", J. Lightwave Technol., vol. 19, no. 3, pp. 371-379, Mar. 2001.

D. J. Bishop, C. R. Giles and G. P. Austin, "The lucent lambdarouter: Mems technology of the future here today", IEEE Commun. Mag., vol. 40, no. 3, pp. 75-79, 2002.

P. Granestrand, B. Lagerström, P. Svensson, H. Olofsson, J. Falk and B. Stoltz, "Pigtailed tree-structured 8 × 8 LiNbO3 switch matrix with 112 digital optical switches", IEEE Photon. Technol. Lett., vol. 6, pp. 71-73, Jan. 1994.

H. Okayama and M. Kawahara, "Prototype 32 × 32 optical switch matrix", Electron. Lett., vol. 30, no. 14, pp. 1128-1129, 1994.

K. Hamamoto, T. Anan, K. Komatsu, M. Sugimoto and I. Mito, "First 8 × 8 semiconductor optical matrix switches using GaAs/AlGaAs electro-optic guided-wave directional couplers", Electron. Lett., vol. 28, no. 5, pp. 441-443, 1992.

J. Sasaki, H. Hatakeyama, T. Tamanuki, S. Kitamura, M. Yamaguchi, N. Kitamura, T. Shimoda, M. Kitamura, T. Kato and M. Itoh, "Hybrid integrated 4 × 4 optical matrix switch using self-aligned semiconductor optical amplifier gate arrays and silica planar lightwave circuit", Electron. Lett., vol. 34, no. 10, pp. 986-987, 1998.

N. Sahri, D. Prieto, S. Silvestre, D. Keller, F. Pommereau, M. Renaud, O. Rofidal, A. Dupas, F. Dorgeuille and D. Chiaroni, "A highly integrated 32-SOA gates optoelectronic module suitable for IP multi-terabit optical packet routers", in Proc. OFC'01, 2001, postdeadline paper PD32.

D. Chiaroni, P. Bonno, O. Rofidal, J. Jacquinot, P. Poignant, C. Coeurjoly, F. Fernandez, E. Mestre, J. Moncelet, A. Noury, A. Jourdan, T. Zami, A. Dupas, M. Renaud, N. Sahri, D. Keller, S. Silvestre, G. Eilenberger, S. Bunse, W. Lautenschlaeger and F. Masetti, "First demonstration of an asynchronous optical packet switching matrix prototype for multiterabit-class routers/switches", in Proc. ECOC'01, 2001, postdeadline paper ThA4.11.

E. Shekel, A. Feingold, Z. Fradkin, A. Geron, J. Levy, G. Matmon, D. Majer, E. Rafaely, M. Rudman, G. Tidhar, J. Vecht and S. Ruschin, "64 × 64 fast optical switching module", in Proc. OFC'02, 2002, paper TuF3.

M. K. Smit, "New focusing and dispersive planar component based on an optical phased array", Electron. Lett., vol. 24, no. 7, pp. 385-386, Mar. 1988.

C. Dragone, "An N × N optical multiplexer using a planar arrangement of two star couplers", IEEE Photon. Technol. Lett., vol. 3, pp. 812-815, Sept. 1991 .

K. Okamoto, T. Hasegawa, O. Ishida, A. Himeno and Y. Ohmori, "32 × 32 arrayed-waveguide grating multiplexer with uniform loss and cyclic frequency characteristics", Electron. Lett., vol. 33, no. 22, pp. 1865-1866, Oct. 1997.

M. K. Smit and C. V. Dam, "PHASAR-based WDM-devices: Principles, design and applications", IEEE J. Select. Topics Quantum Electron., vol. 2, pp. 236-250, June 1996.

P. G. Bernasconi, L. W. Stulz, M. A. Cappuzzo, E. Y. Chen, L. T. Gomez, E. J. Laskowski and A. Wong-foy, "N× N arrayed waveguide gratings with improved frequency accuracy", IEEE J. Select. Topics Quantum Electron., vol. 8, pp. 1115-1121, Nov. 2002.

J. Gripp, M. Duelk, J. Simsarian, S. Chandrasekhar, P. Bernasconi, A. Bhardwaj, Y. Su, K. Sherman, L. Buhl, E. Laskowski, M. Capuzzo, L. Stulz, M. Zirngibl, O. Laznicka, T. Link, R. Seitz, P. Mayer and M. Berger, "Demonstration of a 1.2 Tb/s optical packet switch fabric (32 * 40 Gb/s) based on 40 Gb/s burst-mode clock-data-recovery, fast tunable lasers and a high-performance NxN AWG", in Proc. ECOC'01, 2001,postdeadline paper ThA4.8.

M. Duelk, J. Gripp, J. Simsarian, A. Bhardwaj, P. Bernasconi, M. Zirngibl and O. Laznicka, "Fast packet routing in a 2.5 Tb/s optical switch fabric with 40 Gb/s duobinary signals at 0.8 b/s/Hz spectral efficiency", in Proc. OFC'03, 2003, postdeadline paper PD08.

F. P. Schäfer, W. Schmidt and J. Volze, "Organic dye solution laser", Appl. Phys. Lett., vol. 9, pp. 306-309, 1966.

C. Shannon, D. Moore and K. Claffy, (2002, Nov.) Beyond folklore: Observations on fragmented traffic. IEEE/ACM Trans. Networking. [Online]. Available: http://www.caida.org/outreach/papers/2002/Frag/frag.pdf.

V. Jayaraman, Z. M. Chuang and L. A. Coldren, "Theory, design and performance of extended tuning range semiconductor lasers with sampled gratings", IEEE J. Quantum Electron., vol. 29, pp. 1824-1834, June 1993 .

R. C. Alferness, T. L. Koch, L. L. Buhl, F. Storz, F. Heismann and M. J. R. Martyak, "Grating-assisted InGaAsP/InP vertical codirectional coupler filter", Appl. Phys. Lett., vol. 55, no. 19, pp. 2011-2013, 1989.

G. Busico, N. D. Whitbread, P. J. Williams, D. J. Robbins, A. J. Ward and D. C. J. Reid, "A widely tunable digital supermode DBR laser with high SMSR", in Proc. ECOC'02, 2002, paper 3.3.2.

J. B. D. Soole, K. Poguntke, A. Scherer, H. P. LeBlanc, C. Chang-Hasnain, J. R. Hayes, C. Caneau, R. Bhat and M. A. Koza, "Multistripe array grating integrated cavity (MAGIC) laser: a new semiconductor laser for WDM applications", Electron. Lett., vol. 28, no. 19, pp. 1805-1807, Sept. 1992.

M. Zirngibl, C. H. Joyner, L. W. Stulz, U. Koren, M. D. Chien, M. G. Young and B. I. Miller, "Digitally tunable laser based on the integration of a waveguide grating multiplexer and an optical amplifier", IEEE Photon. Technol. Lett., vol. 6, pp. 516 -518, Apr. 1994.

M. Kauer, M. Girault, J. Leuthold, J. Honthaas, O. Pellegri, C. Goullancourt and M. Zirngibl, "16-channel digitally tunable packet switching transmitter with sub-nanosecond switching time", in Proc. ECOC'02 , 2002, paper 3.3.3.

Y. Kotaki and K. Morito, "Wavelength tunable DFB laser array for WDM applications", in Proc. ECOC'02, 2002, paper 3.3.1.

J. E. Simsarian, A. Bhardwaj, J. Gripp, K. Sherman, Y. Su, C. Webb, L. Zhang and M. Zirngibl, "Fast switching characteristics of a widely tunable laser transmitter", IEEE Photon. Technol. Lett., vol. 15, pp. 1038-1040, Aug. 2003.

Multi-Source Agreement for Tunable Lasers. [Online]. Available: http://www.tunablemsa.com

A. Bhardwaj, J. Gripp, J. E. Simsarian and M. Zirngibl, "Demonstration of stable wavelength switching on a fast tunable laser transmitter", IEEE Photon. Technol. Lett., vol. 15, pp. 1014-1016, July 2003.

M. Reinhold, C. Dorschky, E. Rose, R. Pullela, P. Mayer, F. Kunz, Y. Baeyens, T. Link and J.-P. Mattia, "A fully integrated 40-Gb/s clock and data recovery IC with 1:4 DEMUX in SiGe technology", IEEE J. Solid-State Circuits, vol. 36, pp. 1937-1945, Dec. 2001.

J. Gripp, M. Duelk, J. Simsarian, P. Bernasconi, A. Bhardwaj, K. Sherman, K. Dreyer, M. Zirngibl and O. Laznicka, "4 × 4 demonstration of a 1.2 Tb/s (32× 40 Gb/s) optical switch fabric for multi-Tb/s packet routers", in Proc. ECOC'02, 2002,postdeadline paper PD2.4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.